Journal of Intelligent Information Systems 9, 33-56 (1997)
(© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Discovering Patterns from Large and Dynamic
Sequential Data

KE WANG wangk@iscs.nus.edu.sg
Department of Information Systems and Computer Science, National University of Singapore, Lower Kent Ridge
Road, Singaporel19260

Abstract. Most daily and scientific data are sequential in nature. Discovering important patterns from such data
can benefit the user and scientist by predicting coming activities, interpreting recurring phenomena, extracting
outstanding similarities and differences for close attention, compressing data, and detecting intrusion. We conside
the following incremental discovery problem for large and dynamic sequential data. Suppose that patterns wer
previously discovered and materialized. An update is made to the sequential database. An incremental discove
will take advantage of discovered patterns and compute only the change by accessing the affected part of th
database and data structures. In addition to patterns, the statistics and position information of patterns need to |
updated to allow further analysis and processing on patterns. We present an efficient algorithm for the incrementc
discovery problem. The algorithm is applied to sequential data that honors several sequential patterns modelin
weather changes in Singapore. The algorithm finds what it is supposed to find. Experiments show that for smal
updates and large databases, the incremental discovery algorithm runs in time independent of the data size.

Keywords: combinatorial pattern matching, data mining, sequential pattern, suffix tree, update

1. Introduction

In the daily and scientific life, sequential data, called strings below, are available and usec
everywhere. Examples are text, music notes, weather data, satellite data streams, sto
prices, experiment runs, DNA sequences, histories of medical records, log files, etc. Givel
a (potentially large) string, we are interested in sequential patterns of the forms 8,
wherea, B, af are substrings insidg, such that the frequency of8 is not less than some
minimum support and the probability thatis immediately followed by is not less than
some minimum confidence. Discovering sequential patterns can benefit the user or scienti
by predicting coming activities, interpreting recurring phenomena, extracting outstanding
similarities and differences for close attention, compressing data, detecting intrusion. Fol
example, by discovering the common login patterns of the authorized user, a security syster
may be able to detect an foreign intrusion when login activities in a session are drastically
different from what is predicted by the patterns. Since the underlying database is usually
large, dealing with changing data and patterns is a challenge for research and application |
knowledge discovery and data mining, and incremental methods for updating the pattern
are possible solutions (Fayyad et al., 1996).

The problem. We consider the following incremental discovery problem. Suppose that
sequential patterns were previously discovered and materialized. An update is made to th

34 WANG

underlying database. Forasimple update, itis expected that most patterns and data structul
remain unchanged and recomputing all patterns is unnecessarily expensive, especially fi
large and dynamic databases. Tineemental discovenill take advantage of discovered
patterns and compute only the change by accessing the affected part of the database and d
structures. In addition to patterns, the incremental discovery also maintains the statistic
and position information of patterns to allow further analysis and processing on patterns
Maintaining the position information is also necessary to locate occurrences of a substring
for performing updates on them. In the discovery process, the user may dynamically refine
his/her interestingness level by trying several minimum support and confidence. A viable
incremental solution should allow tuning of patterns according to different minimum support
and confidence, without recomputing patterns.

The contribution. This paper presents an efficient algorithm for the incremental discovery
problem. We allow general updates at any specified position of the string database, not ne
essarily constrained to the two ends of the string. The suffix tree indexing widely used in the
area of combinatorial pattern matching (Baeza-Yates, 1992; Gonnet and Baeza-Yates, 199
Stephen, 1994) does not work for such dynamic strings. The difficulty lies in maintaining
the position information that are sensitive to general updates. We propose a hew represe
tation of the suffix tree, called trdynamic suffix trego index dynamic strings. The string
database is stored on disks using a structure that supports efficient updates and mappin
between positions and disk addresses. The dynamic suffix tree maintains disk address
rather than positions of substrings, thus eliminating the sensitivity to updates. We presen
an algorithm for the incremental discovery problem using the dynamic suffix tree. The dis-
covery framework and incremental discovery algorithm are tested on the sequential data ths
honors several sequential patterns modeling weather changes in Singapore. The algorith
has found what it is supposed to find. Experiments show that for small updates and larg
databases, the incremental discovery algorithm runs in time independent of the data size.
Discovering sequential patterns is related to finding all occurrences of a substring in &
string database, called tistring searching problenn the area of combinatorial pattern
matching (see (Baeza-Yates, 1992; Gonnet and Baeza-Yates, 1991; Stephen, 1994) e.qg.,
a survey). The main difference is that the string searching problem finds occurrences of
particular substring, whereas the discovery problem finds all substrings of some significan
statistics. In similarity, both problems require some form of indexing on substrings. Two
famous algorithms for the string searching problem are the Boyer-Moore algorithm (Boyer
and Moore, 1977) and the Knuth Morris Pratt algorithm (Knuth et al., 1977). Extensions
for this problem have dealt with approximate matchings, a pattern with “wild cards” or
a regular expression, multiple patterns searching, and multi-dimensional searching. Se
(Baeza-Yates, 1992; Baeza-Yates and Gonnet, 1992; Wu and Manber, 1992), for a parti:
list. For most work in this area, indexing or preprocessing was primarily used to speed
up subsequent searches. The suffix tree indexing was used in (McCreight, 1976) to spee
up updates for dynamic strings. Since McCreight (1976), adopted a position humbering
scheme in which a position number never changes once assigned, like the Dewey-Decim:
library access code, generated position numbers do not correspond to the logical ordering «
characters and are practically useless. That position numbering scheme also suffered fro
running out of position numbers after some number of updates. More seriously, McCreight

DISCOVERING PATTERNS 35

(1976) did not address the problem of dangling references to deleted characters in the suff
tree. See Section 3 for elaboration. The problem of discovering sequential patterns wa
an active research area in Al (see, for example, (Dietterich and Michalski, 1985)) and was
recently studied in the database area (see, for example, (Agrawal et al., 1995; Agrawal an
Srikant, 1995; Wang et al., 1994)). However, the discovery algorithms in these works have
to be rerun if the data is updated.

Section 2 defines the discovery problem of sequential patterns and the incremental versio
of the problem. The suffix tree is introduced as a representation of sequential patterns
Section 3 briefly describes the construction and update algorithms of the suffix tree in the
literature, highlighting the inability of the suffix tree for handling dynamic strings. Section 4
proposes thelynamic suffix tredéor dynamic strings. Section 5 presents an incremental
discovery algorithm based on the dynamic suffix tree. Section 6 extends the discovery
framework and incremental discovery algorithm to multiple strings. Section 7 evaluates
the proposed framework and algorithms. Section 8 remarks on future work and conclude:
the paper.

2. The discovery problem

Sequential data. A string Sis a sequence afharacterswrittenabcd. .., where letters

a, b, c,...represent characters. The first character is at position 1, the second at position 2
and so on. The characters in a string may be English characters in a text file, DNA bast
pairs, lines or source code, angles between edges in polygons, machines or machine pa
in a production schedule, music notes and tempo in a musical score, and so forth. Fo
example, a daily weather report can be represented by a Srimgvhich characters are
daily weather of typegky, temperaturg A substringof Sis a sequence of charactersSn

that are consecutive in position. Thangthof substringe, denotede|, is the number of
characters inx.

Discovery of sequential patterns. Thesupportof substringx is the ratio of the number of
positions inS at whicha starts ovetS|. sup«) denotes the support of Let« andg be
non-empty substrings & such that the concatenatiop is a substring of. A sequential
patternor simply patternin S has the forme — g. Thesupportof « — B is supag)
and theconfidencef @ — B is suplafB)/sup«). For the user-specified minimum support
minisupand minimum confidenceninicon f, a pattern ignterestingif its support is at
leastminisupand its confidence is at leastinicon f. Thediscovery problenfor string S
finds all interesting patterns @& Suppose that all interesting patternsSiwere previously
discovered and stored. Assume tat «fy is updated taxdy. With the update and old
patterns as the input, tivecremental discoverfinds all interesting patterns in the updatd
We will extend these definitions to multiple strings in Section 6.

Example 2.1 Consider stringS=abcebcdbgcwhere each letter represents a character.
suplbc) =3/|S| andsupbcdbg = 1/|S|, so the support obc — dbcis 1/|S| and the
confidence obc — dbcis 1/3. The support ob — cis 3/|S| and the confidence of

b — cis 1. If minisup= 2/|S| andminicon f=1/3,b — cis interesting, bubc — dbc

is not. In factb — cis the only interesting pattern i&for suchminisupandminicon f.

36 WANG

The discovery problem can be decomposed into two subproblems:

1. Find all substringe of Ssuch thasup(«) is at leasminisup Such substrings are called
frequentsubstrings.

2. Use the frequent substrings to generate patterns. Here is a straightforward algorithr
for this task. For every frequent substrifigand every non-empty proper prefixof
B, output patterrr — B — « if sup(8)/sup) is at leastminicon f, whereg — « is
obtained by deleting the prefixfrom 8.

Essentially, the discovery problem requires to index substrings together with their suppor
and position information. Let us review several existing techniques for serving this purpose.
The R-tree (Guttman, 1984) andRree (Sellis et al., 1987) support operations on multi-
dimensional data. They can be used for strings by treating the position as one dimensio
and substrings as the second dimension. However, since the number of possible substrin

in a string of lengtm can beO(n?) and a substring can be scattered all over the string, the
performance can be very bad. The technique of inverted lists (Faloutsos, 1985; Tomasi
et al., 1994; Zobel et al., 1993) has been used to index a fixed set of “words” in a text
database. For general-purpose strings for which the data processing unit is substring
there is no clear cut of “words”. Taking all possible substrings as “words” leads to the
blowup of O(n?) words for a string of lengtim. The suffix tree indexing (Cobbs, 1995;
McCreight, 1976; Landau and Vishkin, 1989; Ukkonen, 1992, 1993; Weiner, 1973) was
previously used to speed up subsequent search of substrings. The update of the suff
tree was considered in (McCreight, 1976) for dynamic strings, by assuming that a positior
number never changes once assigned. Such position humbers do not correspond to t
logical ordering of characters and are practically useless. However, several properties c
the suffix tree is appealing for the discovery problem: the construction of the suffix tree
takes linear time and linear space; the frequency and position information of substrings ar
readily available in the suffix tree; the suffix tree serves a natural and compact representatio
of sequential patterns. In this paper, we adopt the suffix tree for indexing substrings, with
the focus on updating the suffix tree for solving the incremental discovery problem. The
following briefly introduces the suffix tree.

The suffix tree (Landau and Vishkin, 1989; McCreight, 1976; Stephen, 1994; Ukkonen,
1992). Assume that no suffix dbis a prefix of a different suffix o6. This can be satisfied
by appending the unique delimiter $ at the right extrem®.db can be mapped to a trde

in which root-to-leaf paths are suffixes 8fand terminal nodes represent uniquely starting
positions of suffixes. Formally, treuffix tree Tfor S satisfies the following properties:

T1 each arc off represents a non-empty substringSf

T2 each non-terminal node df, except the root, must have at least two offspring arcs,

T3 substrings represented by offspring arcs of the same node must begin with differen
characters.

T is a multiway Patrica tree and contains at m&ton-terminal nodes.

DISCOVERING PATTERNS 37

() (d

Figure 1L Construction of suffix trees.

Example 2.2 Consider the string = abcebcdb$ in Example 2.1. We can build the
suffix treeT of S by inserting suffixes intdl' one at a time, starting from the longest
suffix abcebcdbs. In figure 1, (a) shows the tree after the first four suffixes are inserted.
Since none of these suffixes shares a prefix, they all go to different branches. A square ba
represents a terminal node and contains the starting position of the corresponding suffi
(b) shows the tree after the suffscdbc$ is inserted. Sincbcdbd shares prefibc with
bcebcdb8, the arc fobcebcdb8 is split into two, one fobcand one foebcdb&, so that

T3 is satisfied. (c) is the tree after suffidbc$ is inserted, in which the arc faebcdb&

is split. (d) is the suffix tree after all suffixes 8fare inserted.

In figure 1(d), for any substring of S, by following the path from the root that spells
outa we can find the subtree containing all starting positiong of terminal nodes. For
example, by following the path that spells dag, i.e., arc(A, B) in this case, we find the
root B of the subtree containing starting positions 2, 5, ®ofn its terminal nodes. The
number of such terminal nodes can be store® db facilitate counting the occurrence
of bc. Because of property T3, the path that spells out a substring is unique. Note that
the implementation of the suffix tree stores the starting position and length of the substring
associated with an arc, not the substring itself.

Let v be a non-terminal node in the suffix trée subtreév) denotes the subtree rooted
atv. string(v) denotes the substring spelled out by the path from the root twuniv)

38 WANG

denotes the number of terminal nodes withiribtreg€v). Thelocusof substringx, denoted
locuq), isthe firstnode i encountered afteris spelled out by following a path from the
root. All starting positions o& are found in the terminal nodes subtre€locug«)). The
number of starting positions of in Sis given bycountlocus(«)). Thereforesupla) =
countlocugw))/|S|. For example, in figure 1(dlpcugbc) = B andlocugcd) is terminal
node 6. The starting positions bt are found in the terminal nodes withéabtregB), i.e.,
terminal nodes 2, 5, 8. The starting positiongdfare found in the terminal nodes within
subtre€6), that is, node 6.

From the suffix treel for Swith couni(v) stored at every non-terminal nodewe can
extract all interesting sequential patterns framFor every path from the root that spells
out substringd and for every non-empty proper pretixof g, if

countlocugB))/|S| > minisup and
counflocug B))/countlocug«)) > minicon f,

we output patteree — S — « together with the support
counflocusw))/|S|

and the confidence
counflocug B8))/countlocudw)),

wherepg — « is obtained by deleting the prefix from 8. For a fixedminisup only the
upper part ofT consisting of all nodes such thatcountv)/|S| > minisupis of interest.
However, there are good reasons for materializing the whole suffix tree. As the user tune
minisup the part ofT of interest will shrink or grow, and by materializing the suffix tree the
user can tune the interestingness level of patterns without suffering from the delay cause
by reconstructing the suffix tree. Most importantly, the suffix tree is materialized for the
incremental discovery of patterns.

3. Existing suffix tree algorithms

We review existing suffix tree algorithms and point out their pitfalls for dynamic strings. This
motivates a modification of the suffix tree for solving the incremental discovery problem in
the next section.

3.1. Construction

The naive construction of the suffix tree by descending a path from the root for each suffix,
as in Example 2.2, immediately leads to the quadratic time complexity. By exploring the
relationship between every two consecutive suffixes, the construction can be reduced t
a linear time (McCreight, 1976; Weiner, 1973; Ukkonen, 1992). The following is the

DISCOVERING PATTERNS 39

construction in (McCreight, 1976). (McCreight (1976) is chosen because it considered the
update problem of the suffix tree and others didn’t.) Consider two non-terminal modes
andv. There is asuffix-linkfrom u to u if u is the root; otherwise, there issaffix-linkfrom

u to v if string(u) = xa andstring(v) = «, respectively, wher& is a character and is a
substring. Lesuf; denote the suffix o6 beginning at positiom. If x« is a prefix ofsuf;,

thenw is a prefix ofsuf; ;. Therefore, after insertinguf; into the suffix tree, the suffix-link

at nodeu points to a place to insert the restslff, ,, i.e., the part obuf;; without the
prefixa.

Let T denote the suffix tree afteufy, ..., suf, are inserted. The suffix tree f&is
constructed in the ordefy, To, ..., whereT;,; is obtained by insertinguf, _, into T;.
Initially, To contains only the root. Consider insertisgf;,, into T;. On the path for
suf;, letu denote the lowest non-terminal node containing a suffix-link and ldenote
the lowest non-terminal nodeu and w were visited when insertinguf,. Assume that
string(u) = xa andstring(w) = Xap, respectively, wherg is a character and andg are
substrings ofS. Suppose that every non-terminal noddinexcept possibly, contains a
suffix-link. This property initially holds foiTp and will be inductively established fdy ;.

To insertsuf,,, we follow the short-cut provided by the suffix-link at From the
definition, for the node pointed by the suffix-linkstring(v) is a prefix ofsuf; ;. Starting
from v, we descend the tree along a sequence of arcs that speffs ¢fup does not end
exactly at a node, the last arc descended is split and a newdnisdaserted at the end of
B. The suffix-link ofw is assigned to point td if it is not assigned yet. This step is called
rescanningn (McCreight, 1976), which establishes the suffix-link:atThe search for the
rest ofsuf,_; (i.e., the part without the prefixg) continues fronmd deeper into the tree.
The search eventually “falls out of the tree” becassg, ; is not a prefix of any suffix in
the tree. If the search does not fall out exactly at a node, the last searched arc is split and
new non-terminal node is inserted, which, by the assumptioh,dathe only non-terminal
node containing no suffix-link. Finally, a new terminal node is inserted for the resif,of
that falls out of the tree. This step is callecanningn (McCreight, 1976).

Example 3.1 Consider figure 1(d), where the suffix-link at the root points to itself and
the suffix-link atB points toC. After inserting suffixsufg, the suffix-link atB provides a
short-cut to insert the part stufy without prefixc, i.e., $. In this casey = w = B, x = b,

a = ¢, andg = . Sincep = ¥, no new non-terminal node is created during rescanning.
Also, sincesuf, falls out of the tree exactly at nodg no new non-terminal node is created
during scanning. For a suffix tree, the short-cut provided by suffix links will avoid a long
traversing from the root.

The detail of the above construction can be found in (McCreight, 1976).

3.2. Update

The update of the suffix tree for dynamic strings was considered in (McCreight, 1976).
Assume that the suffix tre€ for Swas materialized and th&= o8y is updated tasy,
whereq, 8, §, y are substrings. To reflect the updatelinMcCreight (1976) determines
which suffixes (i.e., paths) i are affected and updates such suffixes. On one hand, if

40 WANG

alpha beta gamma

alpha* | beta gamma

I‘i longest beta:—splitter

|
H:— shortest beta—splitter —
]

X

Figure 2 B-splitters.

a suffix is too short to contain any part gf the suffix is not affected. On the other hand,
if a suffix is so long thap is entirely buried in the terminal arc of the suffix, the change
of the sulffix is reflected by the update in striBg Therefore, for a suffix to be affected, it
must contain part of but does not properly contagy in its terminal arc. Such suffixes
were calleds-splitters in (McCreight, 1976) and are defined formally below.

Leta* be the longest suffix af that occurs in at least two different positionsga= a8y .
With respect to the update fromBy to ady, B-splittersare suffixes of the formy, where
€ is a non-empty suffix of*B. See figure 2 for an illustration. Consider a suix;. If
suf; is longer than the longegtsplittera* 8y, suf;, will properly containgy in its terminal
arc because its prefix proceedify does not repeat i5. From the above discussion,
suf; is not affected by the update. $tif; is shorter than the shortegtsplitter xy, where
X is a single charactesuf; does not contain any part @, thus, is not affected either.
Therefore,-splitters are the only suffixes affected by the update. In tessnof),is a
B-splitter if and only ifsuf, starts on the left of, but the terminal arc ofuf, does not
properly contairBy. The test requires to compare the starting positiosudif with that of
y and compare the position stored on the terminal arsdi§rwith the starting position of
By. The starting positions gf andgy are known from the update specification. The other
position information needed for the test can be found in the terminal node and terminal arc
for suf;. Therefore, by visiting the terminal node and terminal arc for ssiifx, we can
determine whethesuf; is a 8-splitter.

The strategy of replacing with § suggested by McCreight (1976) is to delete all
B-splitters fromT and insert intoT all §-splitters of the form wy, wherew is a non-
empty suffix ofa*s. Intuitively, theés-splitters are in lieu of thg-splitters accounting for
the replacement of with §. To find all 8-splitters, it is assumed that terminal nodes are
double chained up in the order of the position. Let us call this chaipdk#ion chain The
deletion proceeds from the shortgssplitter to the longest-splitter. The terminal node for
the shortesg-splitter is the node containing position numbier 1, wherek is the starting
position ofy. Deleting ag-splitter corresponds to deleting its terminal arc and possibly
merging two arcs. See Example 3.2 below. Inserdisplitters is the same as inserting suf-
fixesinthe construction algorithm, proceeding from the longiesgtlitter to the shortest. The
longests-splittera*sy is obtained from the longegtsplittera™ By by replacings with §.

DISCOVERING PATTERNS 41

(@)

Figure 3 Example 3.2.

Example 3.2 Suppose we replagé = ebwith § = fghin S = abcebcdb$. Then
a = abcandy = cdbc$. Initially, the suffix treeT for Sis given in figure 1(d). The
implementation of the suffix tree stores only the starting position and length of the substring
associated with an arc, not the substring itself. The position chain is omitted here becaus
it can be derived from the position in terminal nodes. The longest repeating suéfiisof
a* = bc. There are fouB-splitters: bceby, ceby, eby, by. Theses-splitters are found
and deleted as follows. First, we find the terminal node for the shgsteslitter at the
node containing position number 5, i.e., one position to the left of the starting position of
We follow the position chain towards lower position numbers. Since the terminal arcs for
positions 5, 4, 3, 2 do not properly contg, these terminal nodes repres@asplitters
and are deleted. By the timgsplitterbceby is deleted, as in figure 3(a), nodkis left
with only one offspring arc, violating property T2. So the two arcs on the path are merged
into one arc, as in figure 3(b).

The longess-splitter is obtained from the longestsplitter by replacingd with §, that
is, bcfghy. The fives-splittersbcfghy, cfghy, fghy, ghy, hy are inserted into the
tree in figure 3(b), proceeding from the longest to the shortest. The tree after inserting al
5-splitters is given in figure 3(c). The substring associated with terminaj &rt) gets
updated by default whesbis replaced withf gh in the stringS. The reader may note that
there are two terminal nodes in figure 3(c) containing position number 6. We will discuss
this problem shortly.

The suffix tree was well studied in the literature. We omit the formal description of its
algorithms, which can be found in (Baeza-Yates, 1992; McCreight, 1976; Stephen, 1994
Ukkonen, 1992; Weiner, 1973). Our concern is whether the suffix tree can be applied tc
solve the incremental discovery problem and what modifications and extensions are neede

3.3. The pitfalls to handle updates

Unfortunately, the above update algorithm does not work appropriately. First, McCreight
(1976) adopted a position numbering scheme in which a position number never change
once assigned. That positioning does not correspond to the logical ordering of characters ¢
perceived by the user, therefore, are practically useless. Second, McCreight (1976) faile

42 WANG

to deal with dangling references to deleted positions in the suffix tree. For example, in
figure 1(d) after deleting characteat position 3, the positions on ar¢8, B) and(A, C)

will refer to unexpected places, which clearly posts a big problem for later insertion of
suffixes. On the other hand, maintaining the logical position in the suffix tree is a very
expensive operation. In Example 3.2, replaaibgvith fghrequires to change positions 6,
7,8,9topositions 7, 8, 9, 10. Making such changes in the suffix tree requires to access mar
nodes and arcs. A similar problem exists if substrings instead of positions are stored in th
suffix tree. Finally, the above update algorithm does not address the change of support ¢
substrings, as required by the discovery problem. Therefore, the suffix tree in the literature
is not suitable for indexing dynamic strings. Despite these problems, however, the idea o
updating the suffix tree by deletigysplitters and inserting-splitters is appealing because

it avoids to rebuild the whole tree. The dynamic suffix tree to be proposed below will
borrow this idea and take care of the above mentioned problems.

4. The dynamic suffix tree

We assume that large strirg)is stored on a number of disk pages. In such a disk-based
environment, the position does not provide sufficient information to find characters becaust
consecutive characters may not be stored on consecutive disk pages. Instead, characters
accessed through their disk addresses. The disk address of a character consists of a disk p:
number and an offset of the character within the disk page. Unlike the position, insertion
or deletion affects only the address of characters in the disk pages containing inserted ¢
deleted characters; the address of untouched pages remains unchanged. This motivate
new representation of the suffix tree for dynamic strings, called the dynamic suffix tree, in
which disk addresses rather than positions are stored. Let us consider the data structur
and operations needed for the dynamic suffix tree.

4.1. The B-tree(P)

First, we need a disk-based structure to store the s&iffdne storage structure must provide
efficient mappings between the position and the address. The mapping from addresses
positions is needed to find the position of patterns, and the mapping from positions tc
addresses is needed to perform updates on sBiaa specified position. We propose a
variation of the B-tree, called tH&-tree on positioror simply B-treg(P), for storingS.

The B-tree(P). An entry in a non-terminal node of the B-tree(P) has the fécnr),
wherePr is the pointer to a child node, amdcalled ac-value is the number of characters
indexed in the subtree under this entry. In the B-tree(Rjegfree(m, M), the following
invariants hold for a non-terminal nodecontaining entriegcy, Pry), ..., (Cp, Pry):

P1 forl <i < p, exactlyc characters are indexed in the subtree under br&nch

P2 if v is the root,p > 2; otherwisem < p < M.

P3 all terminal nodes must be at the same level of the tree and characters are contained !
terminal nodes only.

DISCOVERING PATTERNS 43

[

P C
D] 3 2 2 E|3|2|F | |

/||/|| / ||\\| \ﬁ

fg hi K mn o

Figure 4 A B-tree(P) for stringS = abcdefghijkimnopgrstufz

A child node also has a pointer to its parent node, which is needed for mapping addresse
to positions explained later.

Example 4.1 Consider stringS = abcdefghijklmnopgrstu$, where each letter rep-
resents a character. Figure 4 shows a B-tree(P) of d¢8rdg for S. The terminal level
of the tree contains all characters. Ttygalue 6 in nodeC indicates that under the first
branch ofC there are exactly 6 characters. It can be verified that ess@mjue correctly
gives the number of characters in the subtree under the entry containicyahee.

Mapping positions to addresses.Searching for the address corresponding to position
is done by descending the B-tree(P) along a root-to-leaf path,, .. ., ux. As a branch
is descendedg-values on the left of that branch in the current node are accumulated.
The difference betweep and the current accumulative sum determines which branch to
descend at the next level. On reaching a terminal npdthe difference betweepand the
accumulative sum gives the offset withig of the character at positiop.

For example, suppose we want to find charattat position 9 in stringS in figure 4.
Initially, the accumulative surX = 0. The difference 9- X suggests that the left branch
of A be descended, witK unchanged. At nod8, the difference 9- X = 9 is more than
the firstc-value, 7, but less than the sum of the first and seawdlues, so the second
branch is descended andis changed to 7. At nodg, since the difference 9 X = 2
is less than the firat-value, the first branch is descended afé= 7 remains unchanged.
Then the address corresponding to position 9 is given by Kodad offset 9— X = 2.

Mapping addresses to positions.To find the position corresponding to the address given
by terminal nodeu and offseti, we traverse from node towards the root and accumulate

all c-values on the left of the traversed branch, in a way similar to the descending of the
B-tree(P) above. After reaching the root, the accumulative sum gives the position searchec

44 WANG

For example, suppose we want to find the position of the second character in termina
nodeJ in figure 4, i.e., characteag. Initially, the accumulative sunX is set to 2, that is,
the given offset withinJ. We visit the parenD and add taX thec-values inD on the left
of the branch just traversed upwards, giviig= 7. Next, we visit parenB, andX = 7
remains unchanged because the branch traversed is left most. Finally, on reaching the roc
we haveX = 7. Therefore, the position of the second character in terminal dagg’.

Updating the B-tree(P). Inserting and deleting a substring at a specified position is per-
formed in two phases. The search phase finds the terminal nodes to insert or delete tt
substring, and the propagation phase inserts or deletes entries for nodes inserted or delet
at lower levels. The paths descended in the search phase are saved on the stack and u:
by the propagation phase. Insertion at one level may cause more than one node to be cr
ated, and entries in a node may be split and redistributed to satisfy property P2. For
deletion specified by starting and ending positions, the search phase looks for the left an
right limits of the deletion by descending the B-tree(P) along two paths. All characters at
the terminal level between the two limits are deleted. Underflow nodes are merged anc
entires may be redistributed to satisfy property P2. In the propagation phaseydahe

at an entry is computed by summing ellzalues in the child node under the entry, if the
child is non-terminal, or by the number of characters in the child node under the entry, if
the child is terminal. Figure 5 illustrates affected nodes for a general update, where the
shaded area denotes the nodes that are inserted or deleted at one level. Importantly, for bc
insertion and deletion, addresses of characters contained in untouched terminal nodes &
not affected, though their positions may have been changed.

We like to mention that the B-tree(P) has all the nice properties of the B-tree, i.e., the
balanced height, a large branching factor, localizing the search to a single path, etc. Unlik
the B-tree, however, a number of nodes could be inserted or deleted at a level of the B-tree(P
depending on the size of the substring inserted or deleted, but not on the size of the databas
We omit the precise description of these operations on the B-tree(P). We hope that informa
discussion and examples can better bring out the working idea.

left path right path

[\

The left limit of update The right limit of update

Figure 5 Nodes affected by insertion and deletion.

DISCOVERING PATTERNS 45

Figure 6 Example 5.1.

4.2. The dynamic suffix tree

We consider how to modify the suffix tree for indexing dynamic striigtored in the
B-tree(P). Letp.i denote the address of the character at the dffgetdisk pagep. Instead

of storing starting and ending positions of substrings in the suffix tree, we steferance

pair of the form(addr,) on each arc, wheraddr andl are the starting address and length

of the substring associated with the arc. We call such a suffix tredytiemic suffix tree

The dynamic suffix tree for the suffix tree in figure 1(d) is shown in figure 6(c), with the
B-tree(P) in figure 6(a). For convenience, the starting positions of suffixes are given next

46 WANG

to terminal nodes. The lengthon a terminal arc is not used because the substring on a
terminal arc always extends to the end of the string. To apply the dynamic suffix tree to
solve the incremental discovery problem, the problems mentioned in Subsection 3.3 mus
be addressed. This is the topic of the next section.

5. The incremental discovery algorithm

Assume that strings is updated fromu8y to ady. The update ofS is performed in
the B-tree(P) by deleting and insertings, as in Section 4. We focus on the update of
the dynamic suffix tre@ for S. Let pos(addr) denote the position corresponding to the
addressddr.

It is important that the change in the dynamic suffix tree is limited to only affected
paths, that isg-splitters and-splitters. The dynamic suffix tree is updated in two phases,
corresponding to deleting-splitters and inserting-splitters in Section 3. The first phase
deletes allg-splitters and adjusts all reference paisidr, |) such that the position range
[pos(addr), pos(addr) + | — 1] intersets with the position range gt If there is an in-
tersection,(addr, I) is referring to deleted characters and is calidangling A dangling
reference pair must be replaced with a non-dangling reference pair that represents tr
same substring. The second phase ingesfglitters and adjusts the support affected by the
deletion ofg-splitters and insertion df-splitters. Since insertingtsplitters needs to access
substrings associated with arcs, references pairs must be replaced by non-dangling referen
pairsinthe first phase so that the tree is free of dangling references. The big question is whel
to find all dangling reference pairs in the suffix tree. The following theorem gives the answer.

Theorem 5.1. Suppose that S is updated frarfiy to ady. If the reference pair on a
non-terminal arc(u, v) is dangling,(u, v) is on ag-splitter with respect to this update.

From Theorem 5.1, we can find all dangling reference paig splitters, or equivalently,
we can adjust dangling reference pairs by accessing only ancestor arcs of deleted termin
nodes. To prove Theorem 5.1, we say that references addn, |1), ..., (addx, lx)
along a path in the dynamic suffix tree arentinuousif the last position referred to by
(addr, I;) proceeds immediately the first position referred to(agdr, 1, l; 1), that is,
pogaddr) +I; = pogaddr, 1), for1 <i < k.

Proof of Theorem 5.1: Consider the suffix tree forSy constructed by inserting all
suffixes ofaBy. For any non-terminal ar¢x, y), there is at least one afy, z) from y
such that the reference pairs 6n y) and(y, z) are continuous. In fact, we can choose
the arc(y, z) such that(x, y) and(y, z) are produced by splitting a single arc during the
construction of the suffix tree. Thus, there is a pathy), ..., (X', ¥) in the suffix tree to a
terminal node, on which all reference pairs are continuous. Now we consider the ayc
inthe theorem. Letu, v), ..., (U, v") be the path to a terminal node on which all reference
pairs are continuous. Since the reference paifuon) refers to a deleted characterfn

the terminal arqu’, v") does not properly contaifiy, otherwise, the reference pairs on
path(u, v), ..., (U, v’) are not continuous. In other words, the terminal nodepresents

DISCOVERING PATTERNS 47

a B-splitter containing arcu, v). Then the theorem follows because the update algorithm
below preserves the continuity of reference pairs required. |

The incremental discovery algorithmfor string update fromS8y toady. Itis assumed
that the dynamic suffix tree for string8y is stored.

Phase 1.

Step la. Delete allg-splitters, as in Section 3.2. Lét~ contain the parents of deleted
terminal nodes. (If deleting A-splitter causes two argsl, x) and(x, v) to be merged
into one arqu, v), A~ containsu instead ofx.

Step 1b. Mark all nodes inA—, their ancestors, and connecting arcs. To avoid repeated
markings, we start with nodes in—, walk up the tree and mark nodes and arcs until
encountering either the root or a marked node. From Theorem 5.1, only reference pair:
on marked arcs are affected.

Step 1c.Adjust reference pairs on marked arcs. This is done by the postorder traversal of
all marked arcs. For each af@, v) being traversed, lgtaddrl, |) be the reference pair
on (u, v) and let(addr2, m) be the reference pair on any offspring arawofWe replace
(addra, l) on(u, v) with (addr3, I), whereaddr3 is the address corresponding to position
pos(addr2) —|I. The addresaddr3 can be found by mappireddr2 to pos(addr2) and
mappingpos(addr2) — | to the corresponding address using the B-tree(P). We say that
addr3 is atl-distancefrom addr2.

By definition, (addr3, |) and (addr2, m) are continuous. Let us complete the proof of
Theorem 5.1. Assume that before updating the dynamic suffix tree, every non-terminal nod
has a path to a terminal node on which all reference pairs are continuous. An induction or
the traversing order can show that any marked node has a path to a terminal node on whic
all reference pairs are continuous. This completes the proof of Theorem 5.1.

The reason thataddrl, |) on (u, v) can be replaced wittaddr3, I) in Step 1c is because
they refer to the same substring. From the above discussion, for any offsprifig ancat
v there is a patltv, w), ..., (v, w’) to some terminal node’ on which all reference pairs
are continuous, andddr3 is atl-distance from the address ¢n, w). This implies that
replacingaddrl with addr3 does not change the suffix representedvhyThus,(addrd, I)
and(addr3, |) represent the same substring.

Phase 2.

Step 2a. Insert all s-splitters, as in Section 3.2. Leét™ contain all parents of inserted
terminal nodes.

Step 2b. Mark all nodes inA™, their ancestors and connecting arcs, similar to Step 1b.
Step 2c.Adjustcount(v) for marked nodes. This is done by the postorder traversal of all
arcs marked in either Step 1b or 2b. The changmahiv) atanode in A~ U At isthe
signed number of terminal nodes deleted and inserted undene change ofouni(v)
at a marked node notin A~ U AT is the sum of the changes oduntu) for all marked

48 WANG

childrenu of v. The newcouniv) at a marked node is equal to the oldouniv) plus
the change ofountv).

Example 5.1 Consider stringS = abcebcdb$ stored in the B-tree(P) in figure 6(a).
Figure 6(c) shows the dynamic suffix tree fBwith the suffix-links and position chain
omitted. A reference paip.i, |) denotes the substring starting at addrpssand having
lengthl. Each terminal node in the dynamic suffix tree contains the starting address of
the represented suffix. For convenience, the starting position of suffixes are given next t
terminal nodes in figure 6(ctouniv) for a non-terminal node is printed inside the node.
For examplesuf, = bcebcd b8 is represented by patif, A), (A, 2) and has the starting
addressX.2, sufy; = bcdbd is represented by paitF, A), (A, 5) and has the starting
addressyr.1. The reference pairs on patk, A), (A, 2) are continuous, but the reference
pairs on pati(F, A), (A, 5) are not.

Consider the updatd from abcebcdb$ to acbdeebcdbs, that is, replace the firgic
by cbde Thus,x = a, 8 = bc, § = cbde y = ebcdbé& in the update froreB8y to ady .
The following steps are performed.

First, the B-tree(P) in figure 6(a) is descended to search for the left and right linfits of
The search leads to terminal nodésandW and all characters i are deleted. The#
is inserted into the B-tree(P). The offset of character/iis affected by the update. For
example, the characteroriginally having offset 2 inV has offset 3 after update, as in
figure 6(b). To reflect this change, the actual updatgerformed on the dynamic suffix
treeT isaf’y’ to ad’'y’, wherep’ = bce 8 = cbdee y’ = bedbé. Thatis,U’ isU
extended to all characters in nodé

Then updat&)’ is performed on the dynamic suffix tree in figure 6(c). Since character
a does not repeaty* =¢. There are thre@’-splitters: bcey’, cey’, ey’, represented by
terminal nodes containing addresse, W.1, W.2, corresponding to positions 2, 3, 4.
There are fivé’-splitters:cbdeeg/’, bdee/’, dee/’, ee/’, ey’. Figure 6(d) shows the suffix
tree after Step 1a in which thg-splitters are deleted A~ contains node#\, B, F, the
parents of deleted terminal nodes. Marked arcs are in bold face. Figure 6(e) shows the tre
after adjusting reference pairs in Step 1c. For exan{{e?, 2) in figure 6(d) is adjusted
to (Y.1, 2) in Figure 6(e), where addre¥sl is at 2-distance from addreZsl. Similarly,
(W.1, 1) on(F, B) is adjusted tqY.2, 1).

Figure 6(f) shows the tree after inserting thesplitters in Step 2a. From figure 6(b), the
five §'-splitterscbdeg’’, bdee/’, dee/’, eg/’, ey’ start at addresses.2, X.3, W.1, W.2,
W.3, respectively, and they are represented in Figure 6(f) by terminal nodes containing thes
addresses. In descending an arc, the substring associated with the arc is retrieved using t
reference pair on the arc. Since new terminal nodes are insertedBn@eb, E, A* con-
tainsB, C, D, E. All arcs marked in Steps 1b and 2b are in bold face in figure 6(f). Finally,
Step 2c traverses all marked arcs in the postorder to compute the chaogm©f) for an-
cestory of nodes inA~ UA™. Figure 6(g) shows the dynamic suffix tree after the update

6. Extension to multiple strings

We extend the discovery framework and algorithms to multiple strings.

DISCOVERING PATTERNS 49

6.1. The problems

Consider a se6 = {S, ..., &} of strings. Each stringg is identified by an unique
identifieri and is delimited by an unique symbqgl $Let |S| = |S| + --- + |&]. In the

case of multiple strings, there are two ways to define the support of sequential patterns
The 1supportof substringx is the ratiom/|S|, wherem is the total number of occurrences
ofain S, ..., &. The 2supportof substringx is the ration/k, wheren is the number

of strings inSin which « occurs. Letsup («¢) andsup(«) denote the 1-support and 2-
support ofa, respectively. For = 1, 2, thei-supportof sequential pattern — 8 is

sup (¢B), and thd-confidenceof sequential pattera — g is the ratiosup («¢8)/sup («).

With respect to the user-specifietinisupand minicon f, the i-discovery problenis to

find all i-interestingsequential patterns, i.e., sequential patterns wihpport not less
than minisupandi-confidence not less thaninicon f. Given a setS of strings, the set

of i-interesting sequential patterns f8y and an update that either adds a new string to
S or removes an old string fror§, thei-incremental discovery probleis to find the set

of i-interesting sequential patterns for the updéafedrhe problems defined in Section 2
are the 2-discovery problem and 2-incremental discovery problem for the special case of
single string.

6.2. The algorithms

The dynamic suffix tree and the incremental discovery algorithm can be extended to multiple
stringsS = {S, ..., &}. A straightforward extension is to maintain a separate dynamic
suffix tree for each strin@. This wastes storage because no path can be shared among
different strings. In addition, it needs to traverse every suffix tree to determine the suppor
of a substring. The same is true of finding all positions of a substring. Another approach is
to represent all strings in a single dynamic suffix tree, based ogeheralized suffix tree
(GST) Hui (1992) designed for a set of static strings. In the following, we extend the GST
to dynamic strings to solve the incremental discovery problems for multiple strings.

In the case of multiple strings, the position of a character in a string consists of a string
identifier and a position number within that string. First, the B-tree(P) in Section 4 is
extended to multiple stringsS,, ..., &} as follows. The concatenatior5S, ..., k&
is stored at the terminal level of the B-tree(P) frwherei is the identifier ofS. In an
entry of the B-tree(P), the-value has the form.c, wherei is the identifier for§ andc is
the number of characters & in the subtree under the entry. When searching or updating
the B-tree(P), the accumulative sum and comparisocr\dlues are performed only for
those carrying the same identifierThe mapping from addresses to positions returns both
a string identifier and a position number within the string. With these modifications, the
generalization of search and update algorithms of the B-tree(P) is routine.

Now we extend the dynamic suffix-tréle to multiple strings{S;, ..., &}. T is con-
structed by inserting all suffixes &, i = 1, ..., k. Since§ has an unique delimiter; $
suffixes of different§ are represented by different terminal node$ inAll terminal nodes
for suffixes in the same strin§ are chained up by the position chain to facilitate deletion
of B-splitters. Note that each terminal node is on exactly one position chain.

50 WANG

suffix tree for §

3, Po, B . .
/

head position chain for S2

position chain for S1

B-tree on string identifiers

Figure 7. Locating suffixes of a string.

A string § is deleted by deleting all suffixes & from T. To find the suffixes of, a
B-tree on string identifiersis maintained. For every identifierthere is a pointenead at
the terminal level of the B-tree that points to the beginning of the position chaf.fdihe
suffixes ofS are found by searching the B-tree using the search Jkeytering the position
chain pointed byhead, and scanning the position chain. The end of the position chain is
marked by a special symbol. See figure 7. All suffixe§oéire deleted ag-splitters are
in Section 3. As for a single string case, dangling reference pairs caused by deletion mus
be adjusted. A reference paaddr, |) is dangling if it refers to a character of the deleted
S, which can be found out by mapping addresislr to position through the generalized
B-tree(P) for multiple strings. A new string is inserted by inserting all its suffixes into
the suffix tree and chaining up new terminal nodes in the position chai§ fokn entry
for identifieri is inserted into the B-tree with pointhead pointing to the beginning of the
new position chain.

The update otouni(v) at a non-terminal node depends the type of the incremental
discovery problem. For the 1-incremental discovery probleauntv) is equal to the
number of terminal nodes isubtre€v) and the update ofouniv) is the same as in
Section 5. For the 2-incremental discovery problemouniv) is equal to the number
of distinct string identifiers contained in terminal nodestumtregv). Hence, ifsubtreév)
contains a terminal node for the inserted or deleted stciogni(v) is increased or decreased
by one, respectively. Thereforeguniv) can be updated by the postorder traversal of arcs
on splitters as in Section 5. With these modifications, the algorithm in Section 5 provides
a solution to the incremental discovery problem for multiple strings.

DISCOVERING PATTERNS 51

7. Evaluation

This section evaluates the performance and discovery power of the proposed framewor
and algorithm. We report the study only for the case of a single string. We didn’t find much
difference for the case of multiple strings.

7.1. Cost analysis

We measure the cost of the update by the number of tree node access. This is reasonal
because trees are stored on the disk and accessing tree nodes is the dominating activ
performed by the algorithm. Lgtr| denote the number of characters in substring
Consider the update8y to ady. From McCreight (1976), the number of node access to
delete aB-splitter is no more than 3 and the average number of node access to insert
3-splitter is no more than 3. Therefore, deletion and insertion of splitters in Step 1a and
Step 2a can be done in(|3*8| + |«*5|) on average, wherg*8| + |«*§]| is equal to the
number ofa-splitters and3-splitters. In Steps 1b, 1c, 2b, and 2c, each node on splitters is
accessed at most four times.

Another part of the cost comes from accessing the B-tree(P). In Step 1c, adjusting the
reference pair on an arc requires to map an address to the corresponding position and maj
position to the corresponding address. Also, the upgéteto oy requires to deletg and
inserts in the B-tree(P). These costs depend on the height of the B-tree(P) and the lengtl
of the substring updated, not on the data size. It is commonly known that the height of a
balanced B-tree with a large branching factor is very small, even for a very large database
Therefore, the total cost of an update is the number of distinct nodes on splitters with &
small constant factor. For a large string and a local update, which is a scenario assume
for most dynamic environments, it is expected that only a small number of suffixes (i.e.,
paths) are affected compared to the whole suffix tree, therefore, the incremental approac
is more efficient than the naive approach in most cases, as verified by the experiment belov
Of course, if most characters of the string database are updated, the incremental approa
could be worse than the naive computation. However, such cases do not occur often.

7.2. Experiments

One way to evaluate the effectiveness of a discovery algorithm is to apply it to a real data se
and see what it finds. But sometimes it may be difficult to judge the quality of the findings,
without knowing a prior what the algorithm is supposed to find. Thus, to evaluate our
algorithms, we generated data sets that honor several patterns modeling the weather chan
in Singapore. Figure 8(a) gives the set of characters encoding the weather conditions o
sky and temperature. Figure 8(b) gives the patterns used to generate the data and figure 8
is the graphical representation of these patterns in which a node is either a left side or
right side of a pattern. For example, the three patterns with left alidsay that if the

first and second days are (Sunny, High) and (Sunny, Normal) in sequence, the third da
will be (Cloudy, High), (Sunny, High), (Rainy, Normal) with confidence 0.4, 0.2 and 0.4,
respectively. To generate a string, we apply patterns with left sides matching the last few

52 WANG

Characters | (Sky, Temperature)
a (Sunny,High)
b (Sunny,Normal)
c (Cloudy,High)
d (Cloudy,Normal)
€ (Rainy,High)
f (Rainy,Normal)

(a) The encoding of weather conditions

1 0.4 0.35 0.7 0.8 0.3
a—=>b ab3flc 3 d|cd3c|cf3b |efSc
0.2 0.7 0.65 0.1 1 0.55
ab—-a|lbfoalc=>f |cdd3eleS fb =3 a
0.4 0.3 0.2 0.2 0.7 0.45
ab 3 c | bf S3c|lcdSa|cf3a |ef3a|fb 3 c

(b) Patterns used to generate the string

(c) Diagram for patterns

Figure 8

characters of the partial string to extend the string. The confidence of a pattern determine
the probability of picking up the pattern. To start with, the initial string contains the left
side of a randomly chosen pattern.

Discovered patterns. We generated a string of length 2000 k. The dynamic suffix tree
has 3781915 nodes and depth of 30. We chooisésupto be 10%. Therefore, a node is
“infrequent” if its count(v) is less than 200 k. Figure 9(a) shows the dynamic suffix tree

115670

164314

158344

1658899

296740

115668 94639

(a) The suffix tree pruned by minisup = 10%

435331

pattern | confidence (%) | support (%) | original patterns
a—b 100.00 19.84 yes
b—c 41.69 12.65 no
c—f 64.80 13.12 yes
c—1b 51.99 10.51 no
cf—-b 80.17 10.51 yes
f—ob 48.31 10.51 no

(b) Discovered patterns having minisup = 10%

pattern |confidence (%) |support (%)
ab — a 20.04 3.97
ab — ¢ 39.91 7.92
ab o f 40.05 7.95
bf - a 70.00 5.56
bf - ¢ 29.99 2.38
c—d 35.16 7.11
cd—>a 20.00 1.42
cd = c 69.99 4.98
cd—=e 10.00 0.71
cf - a 19.83 2.60
e—f 100.00 0.71
ef & a 69.97 0.49
of »c | 3002 0.21
fb - a 55.01 5.78
fb = ¢ 44.99 4.73

(c) Discovered support and confidence of original patterns

Figure 9 Discovered patterns.

54 WANG

after pruning infrequent nodes, except the first infrequent node each path (to indicate n
more frequent nodes deeper in the path). Figure 9(b) shows the patterns obtained from tt
pruned suffix tree, as described in Section 2, of which three are among those used to generc
the data and three are new. In a sense, the new patterns are those that “follow” from th
original patterns. On the other hand, by reduaimgisupto 0.21%, the algorithm actually
discovered all patterns used to generate the data, as in figure 9(c). (Much more patterr
were discovered fominisup= 0.21% and we have to omit them due to the space limit.)
The discovered confidences of these patterns are very close to their original confidence:
What is more interesting is that the experiment also discovered the importance of thes
patterns which was not originally known at all. For example, the small suppod of e,

e » f,ef —» a, andef — c suggests that these patterns are insignificant and can be
ignored. Of course, itis up to the user to decide the interestingness of patterns by specifyin
or tuningminisupandminicon f.

Performance study. To verify the above cost analysis, we run the incremental method
and the non-incremental method on same sets of data and updates. We simulated the di
in the memory and compared tree node accesses, which corresponds to disk accesses,
updating or constructing the suffix tree by the two methods. The storage used by bott
methods is the same and is ignored in the comparison. The data sets were generated usi
the above weather patterns with the size ranging from 50 k to 5000 k at the interval of 500 k.
For each data set, we considered four groups of updates, with each group containing 1
updates of the same size. The size of an up@ajeto oSy is defined a$s| + |§|. The size

of updates for the four groups are 10, 50, 100, 500, respectively. An updatéo oy

was generated by determiniganda in a random manner, witle| + | 8| being equal to

the specified update size. We averaged the cost of performing the 10 updates in each upde
group. Figure 10(b) shows the cost of the incremental method for different data size. The
update cost is almost not affected by the scale up of the data size beyond 500 k.

To compare with the non-incremental method, figure 10(a) shows the size of the suffix
tree (the vertical axis) created by the construction algorithm for different data size. The
size of the suffix tree grows linearly with the data size. The cost of the non-incremental
method is at least double the size of the suffix tree because it needs to traverse the suff
tree to computeountv) for non-terminal nodes. The comparison of figure 10(a) and
figure 10(b) shows a clear edge of the incremental method over the non-incremental metho

8. Conclusion

We proposed a framework of discovering sequential patterns from sequential data. Thoug
suitable for discovering and representing sequential patterns for static strings, the suffi
tree is very expensive for dynamic strings because of the sensitivity of the position to
the update operation. The existing update algorithm (McCreight, 1976) failed to address
this inefficiency. We proposed a new representation of the suffix tree for dynamic strings,
called the dynamic suffix tree, in which substrings are referenced by addresses rather the
positions. The address reference restricts the impact of updates to a small part of th
dynamic suffix tree, making efficient update of the dynamic suffix tree possible. Based on

DISCOVERING PATTERNS 55

100000 — T T T T T T T 1
90000 - s
80000 - .
70000 .
60000 - .
nodes 50000 [.
40000 T
30000 .
20000 - -
10000 .
0 ! L 1 L 1 1 ! 1 !
0 50 100 150 200 250 300 350 400 450 500
data size (unit=10,000 characters)
(a) The size of the suffix tree
T T T T T T T T T
10000 update size 10 ©— -
update size 50 -+ -
| update size 100 58— N
8000 update size 500 -x- - .
...... x........x........x..---
nodes 6000 | .- %" N
accessed .
4000 ¥ .
2000 — - 8 r:
5ﬁ_ e I I I 4
0 N N 1 N L VN Il N L

50 100 150 200 250 300 350 400 450 500
data size (unit=10,000 characters)

(b) The update cost of the dynamic suffix tree

Figure 10 Performance study.

the dynamic suffix tree, we presented an algorithm for incrementally discovering sequentia
patterns from large and dynamic sequential data. Experiments showed that the propose
framework finds important patterns and that the incremental method performs substantiall
better than the non-incremental one for large and dynamic databases.

The following areas need further investigation in the future. (a) Handling numeric values
such as temperature. Discretization is a possible approach, but its effect on the discover
quality needs to be studied. (b) Discovering patterns from multi-dimensional data, with
the flexibility of allowing the user to specify the dimensions for discovery. For example,
in one case the user may be interested in sky patterns, in another case may be interest
in temperature patterns, and in a third case in combined patterns of sky and temperatur
Simply performing discovery for individual dimensions does not work, nor does performing

56 WANG

discovery for a fixed set of dimensions. (c) Approximate patterns that allow some degree o
errors or mismatches. (d) Discovery within a user-specified range of positions. (e) Discov-
ery of periodic patterns such as “if the stock price goes up on Monday, it will drop on the next
day”. (f) Incremental discovery for these extensions. Solutions to these problems can gen
erally benefit from the work in the areas of Al, combinatorial pattern matching, time series,
and spatial databases, textual databases. We believe that the discovery of sequential patte
covers a major domain of knowledge discovery applications and that a viable solution to
this problem is crucial to turning huge data stores into accessible and actionable knowledge

References

Agrawal, R. and Srikant, R. (1995). Mining sequential pattdESE Conference on Data Engineeri(gp. 3-14).

Agrawal, R., Lin, K.l., Sawhney, H.S., and Shim, K. (1995). Fast Similarity Search in the Presence of Noise,
Scaling, and Translation in Time-Series Databagef)B, 490-501.

Baeza-Yates, R. (1992). Text Retrieval: Theory and Prachitgrrithms, Software, Architecture: Information
Processing1, 465-476.

Baeza-Yates, R. and Gonnet, G.H. (1992). A New Approach to Text Sear€@y, 35(10), 74-82.

Boyer, R.S. and Moore, J.S. (1977). A Fast String Searching Algori@hgM, 20(10), 762-772.

Cobbs, A.L. (1995). Fast approximate matching using suffix treeBrdic. Combinatorial Pattern Matching
Lecture Notes in Computer Science (vol. 937, pp. 41-54), Springer-Verlag.

Dietterich, T.G. and Michalski, R.S. (1985). Discovering Patterns in Strings of Evantifigial Intelligence 25,
187-232.

Faloutsos, C. (1985). Access Methods for T&EM Computing Surveyd7, 49-74.

Fayyad, U., Shapiro, G.P., and Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying
FrameworkKDD, 82—88.

Gonnet, G.H. and Baeza-Yates, R. (19%andbook of Algorithms and Data Structures in Pascal andézond
edition.

Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searchdiyl SIGMOD 47-57.

Hui, L.C.K. (1992). Color Set Size Problem with Applications to String Matching. In A. Apostolico et al. (Eds.),
Combinatorial Patterns Matchind-ecture Notes in Computer Science, 644, 230—243, Springer-Verlag.

Knuth, D.E., Morris, J.H., and Pratt, V.R. (1977). Fast Pattern Matching in St8i§8/ J. Comput6, 323-350.

Landau, G.M. and Vishkin, U. (1989). Fast Parallel and Serial Approximate String Matcluiagjal of Algo-
rithms, 10(2), 157-169.

McCreight, E.M. (1976). A Space-Economical Suffix Tree Construction Algorith@M, 23(2), 262—-272.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). ThdrBe: A Dynamic Index for Multi-Dimensional
Objects,VLDB, 507-518.

Stephen, G.A. (1994). String Searching Algorithms, Lectures Notes Series on Computing, World Scientific, 3.

Tomasic, A., Garcia-Molina, H., and Shoens, K. (1994). Incremental Updates of Inverted Lists for Text Document
RetrievalsACM SIGMOD

Ukkonen, E. (1992). Constructing Suffix-Trees On-Line in Linear Timlgorithms, Software, Architecture:
Information Processing 92Amsterdam: Elsevier, 1, 484—492.

Ukkonen, E., (1993). Approximate matching over suffix treef?ioc. Combinatorial Pattern Matchingol. 4,
pp. 228-242), Springer-Verlag.

Wang, J.T.L., Chirn, G.W., Marr, T.G., Shapiro, B., Shasha, D., and Zhang, K. (1994). Combinatorial Pattern
Discovery for Scientific Sata: Some Preliminary ResldMSM SIGMOD 115-125.

Weiner, P. (1973). Linear pattern matching algorith@enf. Record, IEEE 14th Annual Symposium on Switching
and Automata Theorfpp. 1-11).

Wu, S. and Manber, U. (1992). Fast Text Searching Allowing En@ACM, 35(10), 83-91.

Zobel, J., Moffat, A., and Sacks-Davis, R. (1993). Searching Large Lexicons for Partially Specified Terms using
Compressed Inverted Filegl.DB, 290-301.

