

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

Journal of Intelligent Information Systems 9, 33–56 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Discovering Patterns from Large and Dynamic
Sequential Data

KE WANG wangk@iscs.nus.edu.sg
Department of Information Systems and Computer Science, National University of Singapore, Lower Kent Ridge
Road, Singapore, 119260

Abstract. Most daily and scientific data are sequential in nature. Discovering important patterns from such data
can benefit the user and scientist by predicting coming activities, interpreting recurring phenomena, extracting
outstanding similarities and differences for close attention, compressing data, and detecting intrusion. We consider
the following incremental discovery problem for large and dynamic sequential data. Suppose that patterns were
previously discovered and materialized. An update is made to the sequential database. An incremental discovery
will take advantage of discovered patterns and compute only the change by accessing the affected part of the
database and data structures. In addition to patterns, the statistics and position information of patterns need to be
updated to allow further analysis and processing on patterns. We present an efficient algorithm for the incremental
discovery problem. The algorithm is applied to sequential data that honors several sequential patterns modeling
weather changes in Singapore. The algorithm finds what it is supposed to find. Experiments show that for small
updates and large databases, the incremental discovery algorithm runs in time independent of the data size.

Keywords: combinatorial pattern matching, data mining, sequential pattern, suffix tree, update

1. Introduction

In the daily and scientific life, sequential data, called strings below, are available and used
everywhere. Examples are text, music notes, weather data, satellite data streams, stock
prices, experiment runs, DNA sequences, histories of medical records, log files, etc. Given
a (potentially large) stringS, we are interested in sequential patterns of the formα → β,
whereα, β, αβ are substrings insideS, such that the frequency ofαβ is not less than some
minimum support and the probability thatα is immediately followed byβ is not less than
some minimum confidence. Discovering sequential patterns can benefit the user or scientist
by predicting coming activities, interpreting recurring phenomena, extracting outstanding
similarities and differences for close attention, compressing data, detecting intrusion. For
example, by discovering the common login patterns of the authorized user, a security system
may be able to detect an foreign intrusion when login activities in a session are drastically
different from what is predicted by the patterns. Since the underlying database is usually
large, dealing with changing data and patterns is a challenge for research and application in
knowledge discovery and data mining, and incremental methods for updating the patterns
are possible solutions (Fayyad et al., 1996).

The problem. We consider the following incremental discovery problem. Suppose that
sequential patterns were previously discovered and materialized. An update is made to the

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

34 WANG

underlying database. For a simple update, it is expected that most patterns and data structures
remain unchanged and recomputing all patterns is unnecessarily expensive, especially for
large and dynamic databases. Theincremental discoverywill take advantage of discovered
patterns and compute only the change by accessing the affected part of the database and data
structures. In addition to patterns, the incremental discovery also maintains the statistics
and position information of patterns to allow further analysis and processing on patterns.
Maintaining the position information is also necessary to locate occurrences of a substring
for performing updates on them. In the discovery process, the user may dynamically refine
his/her interestingness level by trying several minimum support and confidence. A viable
incremental solution should allow tuning of patterns according to different minimum support
and confidence, without recomputing patterns.

The contribution. This paper presents an efficient algorithm for the incremental discovery
problem. We allow general updates at any specified position of the string database, not nec-
essarily constrained to the two ends of the string. The suffix tree indexing widely used in the
area of combinatorial pattern matching (Baeza-Yates, 1992; Gonnet and Baeza-Yates, 1991;
Stephen, 1994) does not work for such dynamic strings. The difficulty lies in maintaining
the position information that are sensitive to general updates. We propose a new represen-
tation of the suffix tree, called thedynamic suffix tree, to index dynamic strings. The string
database is stored on disks using a structure that supports efficient updates and mappings
between positions and disk addresses. The dynamic suffix tree maintains disk addresses
rather than positions of substrings, thus eliminating the sensitivity to updates. We present
an algorithm for the incremental discovery problem using the dynamic suffix tree. The dis-
covery framework and incremental discovery algorithm are tested on the sequential data that
honors several sequential patterns modeling weather changes in Singapore. The algorithm
has found what it is supposed to find. Experiments show that for small updates and large
databases, the incremental discovery algorithm runs in time independent of the data size.

Discovering sequential patterns is related to finding all occurrences of a substring in a
string database, called thestring searching problemin the area of combinatorial pattern
matching (see (Baeza-Yates, 1992; Gonnet and Baeza-Yates, 1991; Stephen, 1994) e.g., for
a survey). The main difference is that the string searching problem finds occurrences of a
particular substring, whereas the discovery problem finds all substrings of some significant
statistics. In similarity, both problems require some form of indexing on substrings. Two
famous algorithms for the string searching problem are the Boyer-Moore algorithm (Boyer
and Moore, 1977) and the Knuth Morris Pratt algorithm (Knuth et al., 1977). Extensions
for this problem have dealt with approximate matchings, a pattern with “wild cards” or
a regular expression, multiple patterns searching, and multi-dimensional searching. See
(Baeza-Yates, 1992; Baeza-Yates and Gonnet, 1992; Wu and Manber, 1992), for a partial
list. For most work in this area, indexing or preprocessing was primarily used to speed
up subsequent searches. The suffix tree indexing was used in (McCreight, 1976) to speed
up updates for dynamic strings. Since McCreight (1976), adopted a position numbering
scheme in which a position number never changes once assigned, like the Dewey-Decimal
library access code, generated position numbers do not correspond to the logical ordering of
characters and are practically useless. That position numbering scheme also suffered from
running out of position numbers after some number of updates. More seriously, McCreight

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 35

(1976) did not address the problem of dangling references to deleted characters in the suffix
tree. See Section 3 for elaboration. The problem of discovering sequential patterns was
an active research area in AI (see, for example, (Dietterich and Michalski, 1985)) and was
recently studied in the database area (see, for example, (Agrawal et al., 1995; Agrawal and
Srikant, 1995; Wang et al., 1994)). However, the discovery algorithms in these works have
to be rerun if the data is updated.

Section 2 defines the discovery problem of sequential patterns and the incremental version
of the problem. The suffix tree is introduced as a representation of sequential patterns.
Section 3 briefly describes the construction and update algorithms of the suffix tree in the
literature, highlighting the inability of the suffix tree for handling dynamic strings. Section 4
proposes thedynamic suffix treefor dynamic strings. Section 5 presents an incremental
discovery algorithm based on the dynamic suffix tree. Section 6 extends the discovery
framework and incremental discovery algorithm to multiple strings. Section 7 evaluates
the proposed framework and algorithms. Section 8 remarks on future work and concludes
the paper.

2. The discovery problem

Sequential data. A string Sis a sequence ofcharacterswritten abcd. . . , where letters
a, b, c, . . . represent characters. The first character is at position 1, the second at position 2,
and so on. The characters in a string may be English characters in a text file, DNA base
pairs, lines or source code, angles between edges in polygons, machines or machine parts
in a production schedule, music notes and tempo in a musical score, and so forth. For
example, a daily weather report can be represented by a stringS in which characters are
daily weather of type (sky, temperature). A substringof S is a sequence of characters inS
that are consecutive in position. Thelengthof substringα, denoted|α|, is the number of
characters inα.

Discovery of sequential patterns.Thesupportof substringα is the ratio of the number of
positions inS at whichα starts over|S|. sup(α) denotes the support ofα. Let α andβ be
non-empty substrings ofSsuch that the concatenationαβ is a substring ofS. A sequential
patternor simply pattern in S has the formα → β. Thesupportof α → β is sup(αβ)

and theconfidenceof α → β is sup(αβ)/sup(α). For the user-specified minimum support
minisupand minimum confidenceminicon f, a pattern isinterestingif its support is at
leastminisupand its confidence is at leastminicon f. Thediscovery problemfor string S
finds all interesting patterns inS. Suppose that all interesting patterns inSwere previously
discovered and stored. Assume thatS = αβγ is updated toαδγ . With the update and old
patterns as the input, theincremental discoveryfinds all interesting patterns in the updatedS.
We will extend these definitions to multiple strings in Section 6.

Example 2.1. Consider stringS= abcebcdbc, where each letter represents a character.
sup(bc) = 3/|S| andsup(bcdbc) = 1/|S|, so the support ofbc → dbc is 1/|S| and the
confidence ofbc → dbc is 1/3. The support ofb → c is 3/|S| and the confidence of
b → c is 1. If minisup= 2/|S| andminicon f = 1/3, b → c is interesting, butbc → dbc
is not. In fact,b → c is the only interesting pattern inS for suchminisupandminicon f.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

36 WANG

The discovery problem can be decomposed into two subproblems:

1. Find all substringsα of Ssuch thatsup(α) is at leastminisup. Such substrings are called
frequentsubstrings.

2. Use the frequent substrings to generate patterns. Here is a straightforward algorithm
for this task. For every frequent substringβ and every non-empty proper prefixα of
β, output patternα → β − α if sup(β)/sup(α) is at leastminicon f, whereβ − α is
obtained by deleting the prefixα from β.

Essentially, the discovery problem requires to index substrings together with their support
and position information. Let us review several existing techniques for serving this purpose.

The R-tree (Guttman, 1984) and R+-tree (Sellis et al., 1987) support operations on multi-
dimensional data. They can be used for strings by treating the position as one dimension
and substrings as the second dimension. However, since the number of possible substrings
in a string of lengthn can beO(n2) and a substring can be scattered all over the string, the
performance can be very bad. The technique of inverted lists (Faloutsos, 1985; Tomasic
et al., 1994; Zobel et al., 1993) has been used to index a fixed set of “words” in a text
database. For general-purpose strings for which the data processing unit is substrings,
there is no clear cut of “words”. Taking all possible substrings as “words” leads to the
blowup of O(n2) words for a string of lengthn. The suffix tree indexing (Cobbs, 1995;
McCreight, 1976; Landau and Vishkin, 1989; Ukkonen, 1992, 1993; Weiner, 1973) was
previously used to speed up subsequent search of substrings. The update of the suffix
tree was considered in (McCreight, 1976) for dynamic strings, by assuming that a position
number never changes once assigned. Such position numbers do not correspond to the
logical ordering of characters and are practically useless. However, several properties of
the suffix tree is appealing for the discovery problem: the construction of the suffix tree
takes linear time and linear space; the frequency and position information of substrings are
readily available in the suffix tree; the suffix tree serves a natural and compact representation
of sequential patterns. In this paper, we adopt the suffix tree for indexing substrings, with
the focus on updating the suffix tree for solving the incremental discovery problem. The
following briefly introduces the suffix tree.

The suffix tree (Landau and Vishkin, 1989; McCreight, 1976; Stephen, 1994; Ukkonen,
1992). Assume that no suffix ofS is a prefix of a different suffix ofS. This can be satisfied
by appending the unique delimiter $ at the right extreme ofS. Scan be mapped to a treeT
in which root-to-leaf paths are suffixes ofSand terminal nodes represent uniquely starting
positions of suffixes. Formally, thesuffix tree Tfor Ssatisfies the following properties:

T1 each arc ofT represents a non-empty substring ofS,
T2 each non-terminal node ofT , except the root, must have at least two offspring arcs,
T3 substrings represented by offspring arcs of the same node must begin with different

characters.

T is a multiway Patrica tree and contains at most|S| non-terminal nodes.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 37

Figure 1. Construction of suffix trees.

Example 2.2. Consider the stringS = abcebcdbc$ in Example 2.1. We can build the
suffix treeT of S by inserting suffixes intoT one at a time, starting from the longest
suffix abcebcdbc$. In figure 1, (a) shows the tree after the first four suffixes are inserted.
Since none of these suffixes shares a prefix, they all go to different branches. A square box
represents a terminal node and contains the starting position of the corresponding suffix.
(b) shows the tree after the suffixbcdbc$ is inserted. Sincebcdbc$ shares prefixbc with
bcebcdbc$, the arc forbcebcdbc$ is split into two, one forbcand one forebcdbc$, so that
T3 is satisfied. (c) is the tree after suffixcdbc$ is inserted, in which the arc forcebcdbc$
is split. (d) is the suffix tree after all suffixes ofSare inserted.

In figure 1(d), for any substringα of S, by following the path from the root that spells
out α we can find the subtree containing all starting positions ofα in terminal nodes. For
example, by following the path that spells outbc, i.e., arc(A, B) in this case, we find the
root B of the subtree containing starting positions 2, 5, 8 ofbc in its terminal nodes. The
number of such terminal nodes can be stored atB to facilitate counting the occurrence
of bc. Because of property T3, the path that spells out a substring is unique. Note that
the implementation of the suffix tree stores the starting position and length of the substring
associated with an arc, not the substring itself.

Let v be a non-terminal node in the suffix treeT . subtree(v) denotes the subtree rooted
at v. string(v) denotes the substring spelled out by the path from the root tov. count(v)

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

38 WANG

denotes the number of terminal nodes withinsubtree(v). Thelocusof substringα, denoted
locus(α), is the first node inT encountered afterα is spelled out by following a path from the
root. All starting positions ofα are found in the terminal nodes insubtree(locus(α)). The
number of starting positions ofα in S is given bycount(locus(α)). Therefore,sup(α) =
count(locus(α))/|S|. For example, in figure 1(d),locus(bc) = B andlocus(cd) is terminal
node 6. The starting positions ofbcare found in the terminal nodes withinsubtree(B), i.e.,
terminal nodes 2, 5, 8. The starting positions ofcd are found in the terminal nodes within
subtree(6), that is, node 6.

From the suffix treeT for S with count(v) stored at every non-terminal nodev, we can
extract all interesting sequential patterns fromT . For every path from the root that spells
out substringβ and for every non-empty proper prefixα of β, if

count(locus(β))/|S| ≥ minisup and

count(locus(β))/count(locus(α)) ≥ minicon f,

we output patternα → β − α together with the support

count(locus(α))/|S|

and the confidence

count(locus(β))/count(locus(α)),

whereβ − α is obtained by deleting the prefixα from β. For a fixedminisup, only the
upper part ofT consisting of all nodesv such thatcount(v)/|S| ≥ minisupis of interest.
However, there are good reasons for materializing the whole suffix tree. As the user tunes
minisup, the part ofT of interest will shrink or grow, and by materializing the suffix tree the
user can tune the interestingness level of patterns without suffering from the delay caused
by reconstructing the suffix tree. Most importantly, the suffix tree is materialized for the
incremental discovery of patterns.

3. Existing suffix tree algorithms

We review existing suffix tree algorithms and point out their pitfalls for dynamic strings. This
motivates a modification of the suffix tree for solving the incremental discovery problem in
the next section.

3.1. Construction

The naive construction of the suffix tree by descending a path from the root for each suffix,
as in Example 2.2, immediately leads to the quadratic time complexity. By exploring the
relationship between every two consecutive suffixes, the construction can be reduced to
a linear time (McCreight, 1976; Weiner, 1973; Ukkonen, 1992). The following is the

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 39

construction in (McCreight, 1976). (McCreight (1976) is chosen because it considered the
update problem of the suffix tree and others didn’t.) Consider two non-terminal nodesu
andv. There is asuffix-linkfrom u to u if u is the root; otherwise, there is asuffix-linkfrom
u to v if string(u) = xα andstring(v) = α, respectively, wherex is a character andα is a
substring. Letsufi denote the suffix ofS beginning at positioni . If xα is a prefix ofsufi ,
thenα is a prefix ofsufi +1. Therefore, after insertingsufi into the suffix tree, the suffix-link
at nodeu points to a place to insert the rest ofsufi +1, i.e., the part ofsufi +1 without the
prefixα.

Let Ti denote the suffix tree aftersuf1, . . . , sufi are inserted. The suffix tree forS is
constructed in the orderT1, T2, . . . , whereTi +1 is obtained by insertingsufi +1 into Ti .
Initially, T0 contains only the root. Consider insertingsufi +1 into Ti . On the path for
sufi , let u denote the lowest non-terminal node containing a suffix-link and letw denote
the lowest non-terminal node.u andw were visited when insertingsufi . Assume that
string(u) = xα andstring(w) = xαβ, respectively, wherex is a character andα andβ are
substrings ofS. Suppose that every non-terminal node inTi , except possiblyw, contains a
suffix-link. This property initially holds forT0 and will be inductively established forTi +1.

To insertsufi +1, we follow the short-cut provided by the suffix-link atu. From the
definition, for the nodev pointed by the suffix-link,string(v) is a prefix ofsufi +1. Starting
from v, we descend the tree along a sequence of arcs that spells outβ. If β does not end
exactly at a node, the last arc descended is split and a new noded is inserted at the end of
β. The suffix-link ofw is assigned to point tod if it is not assigned yet. This step is called
rescanningin (McCreight, 1976), which establishes the suffix-link atw. The search for the
rest ofsufi +1 (i.e., the part without the prefixαβ) continues fromd deeper into the tree.
The search eventually “falls out of the tree” becausesufi +1 is not a prefix of any suffix in
the tree. If the search does not fall out exactly at a node, the last searched arc is split and a
new non-terminal node is inserted, which, by the assumption onTi , is the only non-terminal
node containing no suffix-link. Finally, a new terminal node is inserted for the rest ofsufi +1
that falls out of the tree. This step is calledscanningin (McCreight, 1976).

Example 3.1. Consider figure 1(d), where the suffix-link at the root points to itself and
the suffix-link atB points toC. After inserting suffixsuf8, the suffix-link atB provides a
short-cut to insert the part ofsuf9 without prefixc, i.e., $. In this case,u = w = B, x = b,
α = c, andβ = ∅. Sinceβ = ∅, no new non-terminal node is created during rescanning.
Also, sincesuf9 falls out of the tree exactly at nodeC, no new non-terminal node is created
during scanning. For a suffix tree, the short-cut provided by suffix links will avoid a long
traversing from the root.

The detail of the above construction can be found in (McCreight, 1976).

3.2. Update

The update of the suffix tree for dynamic strings was considered in (McCreight, 1976).
Assume that the suffix treeT for Swas materialized and thatS = αβγ is updated toαδγ ,
whereα, β, δ, γ are substrings. To reflect the update inT , McCreight (1976) determines
which suffixes (i.e., paths) inT are affected and updates such suffixes. On one hand, if

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

40 WANG

Figure 2. β-splitters.

a suffix is too short to contain any part ofβ, the suffix is not affected. On the other hand,
if a suffix is so long thatβ is entirely buried in the terminal arc of the suffix, the change
of the suffix is reflected by the update in stringS. Therefore, for a suffix to be affected, it
must contain part ofβ but does not properly containβγ in its terminal arc. Such suffixes
were calledβ-splitters in (McCreight, 1976) and are defined formally below.

Letα∗ be the longest suffix ofα that occurs in at least two different positions inS = αβγ .
With respect to the update fromαβγ to αδγ , β-splittersare suffixes of the formεγ , where
ε is a non-empty suffix ofα∗β. See figure 2 for an illustration. Consider a suffixsufi . If
sufi is longer than the longestβ-splitterα∗βγ , sufi will properly containβγ in its terminal
arc because its prefix proceedingβγ does not repeat inS. From the above discussion,
sufi is not affected by the update. Ifsufi is shorter than the shortestβ-splitter xγ , where
x is a single character,sufi does not contain any part ofβ, thus, is not affected either.
Therefore,β-splitters are the only suffixes affected by the update. In testing,sufi is a
β-splitter if and only ifsufi starts on the left ofγ , but the terminal arc ofsufi does not
properly containβγ . The test requires to compare the starting position ofsufi with that of
γ and compare the position stored on the terminal arc forsufi with the starting position of
βγ . The starting positions ofγ andβγ are known from the update specification. The other
position information needed for the test can be found in the terminal node and terminal arc
for sufi . Therefore, by visiting the terminal node and terminal arc for suffixsufi , we can
determine whethersufi is aβ-splitter.

The strategy of replacingβ with δ suggested by McCreight (1976) is to delete all
β-splitters fromT and insert intoT all δ-splitters of the form ωγ , whereω is a non-
empty suffix ofα∗δ. Intuitively, theδ-splitters are in lieu of theβ-splitters accounting for
the replacement ofβ with δ. To find all β-splitters, it is assumed that terminal nodes are
double chained up in the order of the position. Let us call this chain theposition chain. The
deletion proceeds from the shortestβ-splitter to the longestβ-splitter. The terminal node for
the shortestβ-splitter is the node containing position numberk − 1, wherek is the starting
position ofγ . Deleting aβ-splitter corresponds to deleting its terminal arc and possibly
merging two arcs. See Example 3.2 below. Insertingδ-splitters is the same as inserting suf-
fixes in the construction algorithm, proceeding from the longestδ-splitter to the shortest. The
longestδ-splitterα∗δγ is obtained from the longestβ-splitterα∗βγ by replacingβ with δ.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 41

Figure 3. Example 3.2.

Example 3.2. Suppose we replaceβ = eb with δ = f gh in S = abcebcdbc$. Then
α = abc andγ = cdbc$. Initially, the suffix treeT for S is given in figure 1(d). The
implementation of the suffix tree stores only the starting position and length of the substring
associated with an arc, not the substring itself. The position chain is omitted here because
it can be derived from the position in terminal nodes. The longest repeating suffix ofα is
α∗ = bc. There are fourβ-splitters: bcebγ , cebγ , ebγ , bγ . Theseβ-splitters are found
and deleted as follows. First, we find the terminal node for the shortestβ-splitter at the
node containing position number 5, i.e., one position to the left of the starting position ofγ .
We follow the position chain towards lower position numbers. Since the terminal arcs for
positions 5, 4, 3, 2 do not properly containβγ , these terminal nodes representβ-splitters
and are deleted. By the timeβ-splitterbcebγ is deleted, as in figure 3(a), nodeB is left
with only one offspring arc, violating property T2. So the two arcs on the path are merged
into one arc, as in figure 3(b).

The longestδ-splitter is obtained from the longestβ-splitter by replacingβ with δ, that
is, bcf ghγ . The fiveδ-splittersbcf ghγ , c f ghγ , f ghγ , ghγ , hγ are inserted into the
tree in figure 3(b), proceeding from the longest to the shortest. The tree after inserting all
δ-splitters is given in figure 3(c). The substring associated with terminal arc(A, 1) gets
updated by default wheneb is replaced withf gh in the stringS. The reader may note that
there are two terminal nodes in figure 3(c) containing position number 6. We will discuss
this problem shortly.

The suffix tree was well studied in the literature. We omit the formal description of its
algorithms, which can be found in (Baeza-Yates, 1992; McCreight, 1976; Stephen, 1994;
Ukkonen, 1992; Weiner, 1973). Our concern is whether the suffix tree can be applied to
solve the incremental discovery problem and what modifications and extensions are needed.

3.3. The pitfalls to handle updates

Unfortunately, the above update algorithm does not work appropriately. First, McCreight
(1976) adopted a position numbering scheme in which a position number never changes
once assigned. That positioning does not correspond to the logical ordering of characters as
perceived by the user, therefore, are practically useless. Second, McCreight (1976) failed

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

42 WANG

to deal with dangling references to deleted positions in the suffix tree. For example, in
figure 1(d) after deleting characterc at position 3, the positions on arcs(A, B) and(A, C)

will refer to unexpected places, which clearly posts a big problem for later insertion of
suffixes. On the other hand, maintaining the logical position in the suffix tree is a very
expensive operation. In Example 3.2, replacingebwith f gh requires to change positions 6,
7, 8, 9 to positions 7, 8, 9, 10. Making such changes in the suffix tree requires to access many
nodes and arcs. A similar problem exists if substrings instead of positions are stored in the
suffix tree. Finally, the above update algorithm does not address the change of support of
substrings, as required by the discovery problem. Therefore, the suffix tree in the literature
is not suitable for indexing dynamic strings. Despite these problems, however, the idea of
updating the suffix tree by deletingβ-splitters and insertingδ-splitters is appealing because
it avoids to rebuild the whole tree. The dynamic suffix tree to be proposed below will
borrow this idea and take care of the above mentioned problems.

4. The dynamic suffix tree

We assume that large stringS is stored on a number of disk pages. In such a disk-based
environment, the position does not provide sufficient information to find characters because
consecutive characters may not be stored on consecutive disk pages. Instead, characters are
accessed through their disk addresses. The disk address of a character consists of a disk page
number and an offset of the character within the disk page. Unlike the position, insertion
or deletion affects only the address of characters in the disk pages containing inserted or
deleted characters; the address of untouched pages remains unchanged. This motivates a
new representation of the suffix tree for dynamic strings, called the dynamic suffix tree, in
which disk addresses rather than positions are stored. Let us consider the data structures
and operations needed for the dynamic suffix tree.

4.1. The B-tree(P)

First, we need a disk-based structure to store the stringS. The storage structure must provide
efficient mappings between the position and the address. The mapping from addresses to
positions is needed to find the position of patterns, and the mapping from positions to
addresses is needed to perform updates on stringS at a specified position. We propose a
variation of the B-tree, called theB-tree on positionor simplyB-tree(P), for storingS.

The B-tree(P). An entry in a non-terminal node of the B-tree(P) has the form〈c, Pr〉,
wherePr is the pointer to a child node, andc, called ac-value, is the number of characters
indexed in the subtree under this entry. In the B-tree(P) ofdegree(m, M), the following
invariants hold for a non-terminal nodev containing entries〈c1, Pr1〉, . . . , 〈cp, Prp〉:

P1 for 1 ≤ i ≤ p, exactlyci characters are indexed in the subtree under branchPri ,
P2 if v is the root,p ≥ 2; otherwise,m ≤ p ≤ M .
P3 all terminal nodes must be at the same level of the tree and characters are contained in

terminal nodes only.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 43

Figure 4. A B-tree(P) for stringS = abcdefghijklmnopqrstuv$.

A child node also has a pointer to its parent node, which is needed for mapping addresses
to positions explained later.

Example 4.1. Consider stringS = abcdef ghi jklmnopqrstuv$, where each letter rep-
resents a character. Figure 4 shows a B-tree(P) of degree(2, 4) for S. The terminal level
of the tree contains all characters. Thec-value 6 in nodeC indicates that under the first
branch ofC there are exactly 6 characters. It can be verified that everyc-value correctly
gives the number of characters in the subtree under the entry containing thec-value.

Mapping positions to addresses.Searching for the address corresponding to positionp
is done by descending the B-tree(P) along a root-to-leaf pathu1, u2, . . . , uk. As a branch
is descended,c-values on the left of that branch in the current node are accumulated.
The difference betweenp and the current accumulative sum determines which branch to
descend at the next level. On reaching a terminal nodeuk, the difference betweenp and the
accumulative sum gives the offset withinuk of the character at positionp.

For example, suppose we want to find characteri at position 9 in stringS in figure 4.
Initially, the accumulative sumX = 0. The difference 9− X suggests that the left branch
of A be descended, withX unchanged. At nodeB, the difference 9− X = 9 is more than
the firstc-value, 7, but less than the sum of the first and secondc-values, so the second
branch is descended andX is changed to 7. At nodeE, since the difference 9− X = 2
is less than the firstc-value, the first branch is descended andX = 7 remains unchanged.
Then the address corresponding to position 9 is given by nodeK and offset 9− X = 2.

Mapping addresses to positions.To find the position corresponding to the address given
by terminal nodeu and offseti , we traverse from nodeu towards the root and accumulate
all c-values on the left of the traversed branch, in a way similar to the descending of the
B-tree(P) above. After reaching the root, the accumulative sum gives the position searched.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

44 WANG

For example, suppose we want to find the position of the second character in terminal
nodeJ in figure 4, i.e., characterg. Initially, the accumulative sumX is set to 2, that is,
the given offset withinJ. We visit the parentD and add toX thec-values inD on the left
of the branch just traversed upwards, givingX = 7. Next, we visit parentB, andX = 7
remains unchanged because the branch traversed is left most. Finally, on reaching the root,
we haveX = 7. Therefore, the position of the second character in terminal nodeJ is 7.

Updating the B-tree(P). Inserting and deleting a substring at a specified position is per-
formed in two phases. The search phase finds the terminal nodes to insert or delete the
substring, and the propagation phase inserts or deletes entries for nodes inserted or deleted
at lower levels. The paths descended in the search phase are saved on the stack and used
by the propagation phase. Insertion at one level may cause more than one node to be cre-
ated, and entries in a node may be split and redistributed to satisfy property P2. For a
deletion specified by starting and ending positions, the search phase looks for the left and
right limits of the deletion by descending the B-tree(P) along two paths. All characters at
the terminal level between the two limits are deleted. Underflow nodes are merged and
entires may be redistributed to satisfy property P2. In the propagation phase, thec-value
at an entry is computed by summing allc-values in the child node under the entry, if the
child is non-terminal, or by the number of characters in the child node under the entry, if
the child is terminal. Figure 5 illustrates affected nodes for a general update, where the
shaded area denotes the nodes that are inserted or deleted at one level. Importantly, for both
insertion and deletion, addresses of characters contained in untouched terminal nodes are
not affected, though their positions may have been changed.

We like to mention that the B-tree(P) has all the nice properties of the B-tree, i.e., the
balanced height, a large branching factor, localizing the search to a single path, etc. Unlike
the B-tree, however, a number of nodes could be inserted or deleted at a level of the B-tree(P),
depending on the size of the substring inserted or deleted, but not on the size of the database.
We omit the precise description of these operations on the B-tree(P). We hope that informal
discussion and examples can better bring out the working idea.

Figure 5. Nodes affected by insertion and deletion.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 45

Figure 6. Example 5.1.

4.2. The dynamic suffix tree

We consider how to modify the suffix tree for indexing dynamic stringS stored in the
B-tree(P). Letp.i denote the address of the character at the offseti on disk pagep. Instead
of storing starting and ending positions of substrings in the suffix tree, we store areference
pair of the form(addr, l) on each arc, whereaddr andl are the starting address and length
of the substring associated with the arc. We call such a suffix tree thedynamic suffix tree.
The dynamic suffix tree for the suffix tree in figure 1(d) is shown in figure 6(c), with the
B-tree(P) in figure 6(a). For convenience, the starting positions of suffixes are given next

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

46 WANG

to terminal nodes. The lengthl on a terminal arc is not used because the substring on a
terminal arc always extends to the end of the string. To apply the dynamic suffix tree to
solve the incremental discovery problem, the problems mentioned in Subsection 3.3 must
be addressed. This is the topic of the next section.

5. The incremental discovery algorithm

Assume that stringS is updated fromαβγ to αδγ . The update ofS is performed in
the B-tree(P) by deletingβ and insertingδ, as in Section 4. We focus on the update of
the dynamic suffix treeT for S. Let pos(addr) denote the position corresponding to the
addressaddr.

It is important that the change in the dynamic suffix tree is limited to only affected
paths, that is,β-splitters andδ-splitters. The dynamic suffix tree is updated in two phases,
corresponding to deletingβ-splitters and insertingδ-splitters in Section 3. The first phase
deletes allβ-splitters and adjusts all reference pairs(addr, l) such that the position range
[pos(addr), pos(addr) + l − 1] intersets with the position range ofβ. If there is an in-
tersection,(addr, l) is referring to deleted characters and is calleddangling. A dangling
reference pair must be replaced with a non-dangling reference pair that represents the
same substring. The second phase insertsδ-splitters and adjusts the support affected by the
deletion ofβ-splitters and insertion ofδ-splitters. Since insertingδ-splitters needs to access
substrings associated with arcs, references pairs must be replaced by non-dangling reference
pairs in the first phase so that the tree is free of dangling references. The big question is where
to find all dangling reference pairs in the suffix tree. The following theorem gives the answer.

Theorem 5.1. Suppose that S is updated fromαβγ to αδγ . If the reference pair on a
non-terminal arc(u, v) is dangling,(u, v) is on aβ-splitter with respect to this update.

From Theorem 5.1, we can find all dangling reference pairs onβ-splitters, or equivalently,
we can adjust dangling reference pairs by accessing only ancestor arcs of deleted terminal
nodes. To prove Theorem 5.1, we say that references pairs(addr1, l1), . . . , (addrk, lk)
along a path in the dynamic suffix tree arecontinuousif the last position referred to by
(addri , l i) proceeds immediately the first position referred to by(addri +1, l i +1), that is,
pos(addri) + l i = pos(addri +1), for 1 ≤ i < k.

Proof of Theorem 5.1: Consider the suffix tree forαβγ constructed by inserting all
suffixes ofαβγ . For any non-terminal arc(x, y), there is at least one arc(y, z) from y
such that the reference pairs on(x, y) and(y, z) are continuous. In fact, we can choose
the arc(y, z) such that(x, y) and(y, z) are produced by splitting a single arc during the
construction of the suffix tree. Thus, there is a path(x, y), . . . , (x′, y′) in the suffix tree to a
terminal node, on which all reference pairs are continuous. Now we consider the arc(u, v)

in the theorem. Let(u, v), . . . , (u′, v′) be the path to a terminal node on which all reference
pairs are continuous. Since the reference pair on(u, v) refers to a deleted character inβ,
the terminal arc(u′, v′) does not properly containβγ , otherwise, the reference pairs on
path(u, v), . . . , (u′, v′) are not continuous. In other words, the terminal nodev′ represents

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 47

a β-splitter containing arc(u, v). Then the theorem follows because the update algorithm
below preserves the continuity of reference pairs required. 2

The incremental discovery algorithmfor string update fromαβγ toαδγ . It is assumed
that the dynamic suffix tree for stringαβγ is stored.

Phase 1.

Step 1a. Delete allβ-splitters, as in Section 3.2. Let1− contain the parents of deleted
terminal nodes. (If deleting aβ-splitter causes two arcs(u, x) and(x, v) to be merged
into one arc(u, v), 1− containsu instead ofx.

Step 1b. Mark all nodes in1−, their ancestors, and connecting arcs. To avoid repeated
markings, we start with nodes in1−, walk up the tree and mark nodes and arcs until
encountering either the root or a marked node. From Theorem 5.1, only reference pairs
on marked arcs are affected.

Step 1c.Adjust reference pairs on marked arcs. This is done by the postorder traversal of
all marked arcs. For each arc(u, v) being traversed, let(addr1, l) be the reference pair
on (u, v) and let(addr2, m) be the reference pair on any offspring arc ofv. We replace
(addr1, l) on(u, v) with (addr3, l), whereaddr3 is the address corresponding to position
pos(addr2) − l . The addressaddr3 can be found by mappingaddr2 to pos(addr2) and
mappingpos(addr2) − l to the corresponding address using the B-tree(P). We say that
addr3 is atl-distancefrom addr2.

By definition, (addr3, l) and(addr2, m) are continuous. Let us complete the proof of
Theorem 5.1. Assume that before updating the dynamic suffix tree, every non-terminal node
has a path to a terminal node on which all reference pairs are continuous. An induction on
the traversing order can show that any marked node has a path to a terminal node on which
all reference pairs are continuous. This completes the proof of Theorem 5.1.

The reason that(addr1, l) on(u, v) can be replaced with(addr3, l) in Step 1c is because
they refer to the same substring. From the above discussion, for any offspring arc(v, w) at
v there is a path(v, w), . . . , (v′, w′) to some terminal nodew′ on which all reference pairs
are continuous, andaddr3 is at l -distance from the address on(v, w). This implies that
replacingaddr1 with addr3 does not change the suffix represented byw′. Thus,(addr1, l)
and(addr3, l) represent the same substring.

Phase 2.

Step 2a. Insert allδ-splitters, as in Section 3.2. Let1+ contain all parents of inserted
terminal nodes.

Step 2b.Mark all nodes in1+, their ancestors and connecting arcs, similar to Step 1b.
Step 2c.Adjustcount(v) for marked nodesv. This is done by the postorder traversal of all

arcs marked in either Step 1b or 2b. The change ofcount(v) at a nodev in 1− ∪ 1+ is the
signed number of terminal nodes deleted and inserted underv. The change ofcount(v)

at a marked nodev not in1− ∪ 1+ is the sum of the changes ofcount(u) for all marked

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

48 WANG

childrenu of v. The newcount(v) at a marked nodev is equal to the oldcount(v) plus
the change ofcount(v).

Example 5.1. Consider stringS = abcebcdbc$ stored in the B-tree(P) in figure 6(a).
Figure 6(c) shows the dynamic suffix tree forS with the suffix-links and position chain
omitted. A reference pair(p.i, l) denotes the substring starting at addressp.i and having
length l . Each terminal node in the dynamic suffix tree contains the starting address of
the represented suffix. For convenience, the starting position of suffixes are given next to
terminal nodes in figure 6(c).count(v) for a non-terminal nodev is printed inside the node.
For example,suf2 = bcebcdbc$ is represented by path(F, A), (A, 2) and has the starting
addressX.2, suf5 = bcdbc$ is represented by path(F, A), (A, 5) and has the starting
addressY.1. The reference pairs on path(F, A), (A, 2) are continuous, but the reference
pairs on path(F, A), (A, 5) are not.

Consider the updateU from abcebcdbc$ to acbdeebcdbc$, that is, replace the firstbc
by cbde. Thus,α = a, β = bc, δ = cbde, γ = ebcdbc$ in the update fromαβγ to αδγ .
The following steps are performed.

First, the B-tree(P) in figure 6(a) is descended to search for the left and right limits ofβ.
The search leads to terminal nodesX andW and all characters inβ are deleted. Thenδ
is inserted into the B-tree(P). The offset of characters inW is affected by the update. For
example, the charactere originally having offset 2 inW has offset 3 after updateU , as in
figure 6(b). To reflect this change, the actual updateU ′ performed on the dynamic suffix
treeT is αβ ′γ ′ to αδ′γ ′, whereβ ′ = bce, δ′ = cbdee, γ ′ = bcdbc$. That is,U ′ is U
extended to all characters in nodeW.

Then updateU ′ is performed on the dynamic suffix tree in figure 6(c). Since character
a does not repeat,α∗ = ∅. There are threeβ ′-splitters: bceγ ′, ceγ ′, eγ ′, represented by
terminal nodes containing addressesX.2, W.1, W.2, corresponding to positions 2, 3, 4.
There are fiveδ′-splitters:cbdeeγ ′, bdeeγ ′, deeγ ′, eeγ ′, eγ ′. Figure 6(d) shows the suffix
tree after Step 1a in which theβ ′-splitters are deleted .1− contains nodesA, B, F , the
parents of deleted terminal nodes. Marked arcs are in bold face. Figure 6(e) shows the tree
after adjusting reference pairs in Step 1c. For example,(X.2, 2) in figure 6(d) is adjusted
to (Y.1, 2) in Figure 6(e), where addressY.1 is at 2-distance from addressZ.1. Similarly,
(W.1, 1) on (F, B) is adjusted to(Y.2, 1).

Figure 6(f) shows the tree after inserting theδ′-splitters in Step 2a. From figure 6(b), the
five δ′-splitterscbdeeγ ′, bdeeγ ′, deeγ ′, eeγ ′, eγ ′ start at addressesX.2, X.3, W.1, W.2,

W.3, respectively, and they are represented in Figure 6(f) by terminal nodes containing these
addresses. In descending an arc, the substring associated with the arc is retrieved using the
reference pair on the arc. Since new terminal nodes are inserted underB, C, D, E, 1+ con-
tainsB, C, D, E. All arcs marked in Steps 1b and 2b are in bold face in figure 6(f). Finally,
Step 2c traverses all marked arcs in the postorder to compute the change ofcount(v) for an-
cestorsv of nodes in1−∪1+. Figure 6(g) shows the dynamic suffix tree after the updateU ′.

6. Extension to multiple strings

We extend the discovery framework and algorithms to multiple strings.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 49

6.1. The problems

Consider a setS = {S1, . . . , Sk} of strings. Each stringSi is identified by an unique
identifier i and is delimited by an unique symbol $i . Let |S| = |S1| + · · · + |Sk|. In the
case of multiple strings, there are two ways to define the support of sequential patterns.
The 1-supportof substringα is the ratiom/|S|, wherem is the total number of occurrences
of α in S1, . . . , Sk. The 2-supportof substringα is the ration/k, wheren is the number
of strings inS in which α occurs. Letsup1(α) andsup2(α) denote the 1-support and 2-
support ofα, respectively. Fori = 1, 2, the i-supportof sequential patternα → β is
supi (αβ), and thei-confidenceof sequential patternα → β is the ratiosupi (αβ)/supi (α).
With respect to the user-specifiedminisupandminicon f, the i-discovery problemis to
find all i-interestingsequential patterns, i.e., sequential patterns withi -support not less
thanminisupand i -confidence not less thanminicon f. Given a setS of strings, the set
of i -interesting sequential patterns forS, and an update that either adds a new string to
S or removes an old string fromS, the i-incremental discovery problemis to find the set
of i -interesting sequential patterns for the updatedS. The problems defined in Section 2
are the 2-discovery problem and 2-incremental discovery problem for the special case of a
single string.

6.2. The algorithms

The dynamic suffix tree and the incremental discovery algorithm can be extended to multiple
stringsS = {S1, . . . , Sk}. A straightforward extension is to maintain a separate dynamic
suffix tree for each stringSi . This wastes storage because no path can be shared among
different strings. In addition, it needs to traverse every suffix tree to determine the support
of a substring. The same is true of finding all positions of a substring. Another approach is
to represent all strings in a single dynamic suffix tree, based on thegeneralized suffix tree
(GST) Hui (1992) designed for a set of static strings. In the following, we extend the GST
to dynamic strings to solve the incremental discovery problems for multiple strings.

In the case of multiple strings, the position of a character in a string consists of a string
identifier and a position number within that string. First, the B-tree(P) in Section 4 is
extended to multiple strings{S1, . . . , Sk} as follows. The concatenation 1S12S2, . . . , kSk

is stored at the terminal level of the B-tree(P) forS, wherei is the identifier ofSi . In an
entry of the B-tree(P), thec-value has the formi .c, wherei is the identifier forSi andc is
the number of characters inSi in the subtree under the entry. When searching or updating
the B-tree(P), the accumulative sum and comparison ofc-values are performed only for
those carrying the same identifieri . The mapping from addresses to positions returns both
a string identifier and a position number within the string. With these modifications, the
generalization of search and update algorithms of the B-tree(P) is routine.

Now we extend the dynamic suffix-treeT to multiple strings{S1, . . . , Sk}. T is con-
structed by inserting all suffixes ofSi , i = 1, . . . , k. SinceSi has an unique delimiter $i ,
suffixes of differentSi are represented by different terminal nodes inT . All terminal nodes
for suffixes in the same stringSi are chained up by the position chain to facilitate deletion
of β-splitters. Note that each terminal node is on exactly one position chain.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

50 WANG

Figure 7. Locating suffixes of a string.

A string Si is deleted by deleting all suffixes ofSi from T . To find the suffixes ofSi , a
B-tree on string identifiersi is maintained. For every identifieri , there is a pointerheadi at
the terminal level of the B-tree that points to the beginning of the position chain forSi . The
suffixes ofSi are found by searching the B-tree using the search keyi , entering the position
chain pointed byheadi , and scanning the position chain. The end of the position chain is
marked by a special symbol. See figure 7. All suffixes ofSi are deleted asβ-splitters are
in Section 3. As for a single string case, dangling reference pairs caused by deletion must
be adjusted. A reference pair(addr, l) is dangling if it refers to a character of the deleted
Si , which can be found out by mapping addressaddr to position through the generalized
B-tree(P) for multiple strings. A new stringSi is inserted by inserting all its suffixes into
the suffix tree and chaining up new terminal nodes in the position chain forSi . An entry
for identifieri is inserted into the B-tree with pointerheadi pointing to the beginning of the
new position chain.

The update ofcount(v) at a non-terminal nodev depends the type of the incremental
discovery problem. For the 1-incremental discovery problem,count(v) is equal to the
number of terminal nodes insubtree(v) and the update ofcount(v) is the same as in
Section 5. For the 2-incremental discovery problem,count(v) is equal to the number
of distinct string identifiers contained in terminal nodes insubtree(v). Hence, ifsubtree(v)

contains a terminal node for the inserted or deleted string,count(v) is increased or decreased
by one, respectively. Therefore,count(v) can be updated by the postorder traversal of arcs
on splitters as in Section 5. With these modifications, the algorithm in Section 5 provides
a solution to the incremental discovery problem for multiple strings.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 51

7. Evaluation

This section evaluates the performance and discovery power of the proposed framework
and algorithm. We report the study only for the case of a single string. We didn’t find much
difference for the case of multiple strings.

7.1. Cost analysis

We measure the cost of the update by the number of tree node access. This is reasonable
because trees are stored on the disk and accessing tree nodes is the dominating activity
performed by the algorithm. Let|α| denote the number of characters in substringα.
Consider the updateαβγ to αδγ . From McCreight (1976), the number of node access to
delete aβ-splitter is no more than 3 and the average number of node access to insert a
δ-splitter is no more than 3. Therefore, deletion and insertion of splitters in Step 1a and
Step 2a can be done in 3(|α∗β| + |α∗δ|) on average, where|α∗β| + |α∗δ| is equal to the
number ofα-splitters andβ-splitters. In Steps 1b, 1c, 2b, and 2c, each node on splitters is
accessed at most four times.

Another part of the cost comes from accessing the B-tree(P). In Step 1c, adjusting the
reference pair on an arc requires to map an address to the corresponding position and map a
position to the corresponding address. Also, the updateαβγ toαδγ requires to deleteβ and
insertδ in the B-tree(P). These costs depend on the height of the B-tree(P) and the length
of the substring updated, not on the data size. It is commonly known that the height of a
balanced B-tree with a large branching factor is very small, even for a very large database.
Therefore, the total cost of an update is the number of distinct nodes on splitters with a
small constant factor. For a large string and a local update, which is a scenario assumed
for most dynamic environments, it is expected that only a small number of suffixes (i.e.,
paths) are affected compared to the whole suffix tree, therefore, the incremental approach
is more efficient than the naive approach in most cases, as verified by the experiment below.
Of course, if most characters of the string database are updated, the incremental approach
could be worse than the naive computation. However, such cases do not occur often.

7.2. Experiments

One way to evaluate the effectiveness of a discovery algorithm is to apply it to a real data set
and see what it finds. But sometimes it may be difficult to judge the quality of the findings,
without knowing a prior what the algorithm is supposed to find. Thus, to evaluate our
algorithms, we generated data sets that honor several patterns modeling the weather change
in Singapore. Figure 8(a) gives the set of characters encoding the weather conditions on
sky and temperature. Figure 8(b) gives the patterns used to generate the data and figure 8(c)
is the graphical representation of these patterns in which a node is either a left side or a
right side of a pattern. For example, the three patterns with left sideab say that if the
first and second days are (Sunny, High) and (Sunny, Normal) in sequence, the third day
will be (Cloudy, High), (Sunny, High), (Rainy, Normal) with confidence 0.4, 0.2 and 0.4,
respectively. To generate a string, we apply patterns with left sides matching the last few

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

52 WANG

Figure 8.

characters of the partial string to extend the string. The confidence of a pattern determines
the probability of picking up the pattern. To start with, the initial string contains the left
side of a randomly chosen pattern.

Discovered patterns. We generated a string of length 2000 k. The dynamic suffix tree
has 3781915 nodes and depth of 30. We chooseminisupto be 10%. Therefore, a node is
“infrequent” if its count(v) is less than 200 k. Figure 9(a) shows the dynamic suffix tree

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

Figure 9. Discovered patterns.

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

54 WANG

after pruning infrequent nodes, except the first infrequent node each path (to indicate no
more frequent nodes deeper in the path). Figure 9(b) shows the patterns obtained from the
pruned suffix tree, as described in Section 2, of which three are among those used to generate
the data and three are new. In a sense, the new patterns are those that “follow” from the
original patterns. On the other hand, by reducingminisupto 0.21%, the algorithm actually
discovered all patterns used to generate the data, as in figure 9(c). (Much more patterns
were discovered forminisup= 0.21% and we have to omit them due to the space limit.)
The discovered confidences of these patterns are very close to their original confidences.
What is more interesting is that the experiment also discovered the importance of these
patterns which was not originally known at all. For example, the small support ofcd → e,
e → f , ef → a, andef → c suggests that these patterns are insignificant and can be
ignored. Of course, it is up to the user to decide the interestingness of patterns by specifying
or tuningminisupandminicon f.

Performance study. To verify the above cost analysis, we run the incremental method
and the non-incremental method on same sets of data and updates. We simulated the disk
in the memory and compared tree node accesses, which corresponds to disk accesses, for
updating or constructing the suffix tree by the two methods. The storage used by both
methods is the same and is ignored in the comparison. The data sets were generated using
the above weather patterns with the size ranging from 50 k to 5000 k at the interval of 500 k.
For each data set, we considered four groups of updates, with each group containing 10
updates of the same size. The size of an updateαβγ toαδγ is defined as|β|+ |δ|. The size
of updates for the four groups are 10, 50, 100, 500, respectively. An updateαβγ to αδγ

was generated by determiningβ andα in a random manner, with|α| + |β| being equal to
the specified update size. We averaged the cost of performing the 10 updates in each update
group. Figure 10(b) shows the cost of the incremental method for different data size. The
update cost is almost not affected by the scale up of the data size beyond 500 k.

To compare with the non-incremental method, figure 10(a) shows the size of the suffix
tree (the vertical axis) created by the construction algorithm for different data size. The
size of the suffix tree grows linearly with the data size. The cost of the non-incremental
method is at least double the size of the suffix tree because it needs to traverse the suffix
tree to computecount(v) for non-terminal nodesv. The comparison of figure 10(a) and
figure 10(b) shows a clear edge of the incremental method over the non-incremental method.

8. Conclusion

We proposed a framework of discovering sequential patterns from sequential data. Though
suitable for discovering and representing sequential patterns for static strings, the suffix
tree is very expensive for dynamic strings because of the sensitivity of the position to
the update operation. The existing update algorithm (McCreight, 1976) failed to address
this inefficiency. We proposed a new representation of the suffix tree for dynamic strings,
called the dynamic suffix tree, in which substrings are referenced by addresses rather than
positions. The address reference restricts the impact of updates to a small part of the
dynamic suffix tree, making efficient update of the dynamic suffix tree possible. Based on

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

DISCOVERING PATTERNS 55

Figure 10. Performance study.

the dynamic suffix tree, we presented an algorithm for incrementally discovering sequential
patterns from large and dynamic sequential data. Experiments showed that the proposed
framework finds important patterns and that the incremental method performs substantially
better than the non-incremental one for large and dynamic databases.

The following areas need further investigation in the future. (a) Handling numeric values
such as temperature. Discretization is a possible approach, but its effect on the discovery
quality needs to be studied. (b) Discovering patterns from multi-dimensional data, with
the flexibility of allowing the user to specify the dimensions for discovery. For example,
in one case the user may be interested in sky patterns, in another case may be interested
in temperature patterns, and in a third case in combined patterns of sky and temperature.
Simply performing discovery for individual dimensions does not work, nor does performing

P1: MVG/JHR P2: MVG

Journal of Intelligent Information Systems KL473-01-Wang July 28, 1997 11:52

56 WANG

discovery for a fixed set of dimensions. (c) Approximate patterns that allow some degree of
errors or mismatches. (d) Discovery within a user-specified range of positions. (e) Discov-
ery of periodic patterns such as “if the stock price goes up on Monday, it will drop on the next
day”. (f) Incremental discovery for these extensions. Solutions to these problems can gen-
erally benefit from the work in the areas of AI, combinatorial pattern matching, time series,
and spatial databases, textual databases. We believe that the discovery of sequential patterns
covers a major domain of knowledge discovery applications and that a viable solution to
this problem is crucial to turning huge data stores into accessible and actionable knowledge.

References

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns.IEEE Conference on Data Engineering(pp. 3–14).
Agrawal, R., Lin, K.I., Sawhney, H.S., and Shim, K. (1995). Fast Similarity Search in the Presence of Noise,

Scaling, and Translation in Time-Series Databases,VLDB, 490–501.
Baeza-Yates, R. (1992). Text Retrieval: Theory and Practice,Algorithms, Software, Architecture: Information

Processing, 1, 465–476.
Baeza-Yates, R. and Gonnet, G.H. (1992). A New Approach to Text Searching,CACM, 35(10), 74–82.
Boyer, R.S. and Moore, J.S. (1977). A Fast String Searching Algorithm,CACM, 20(10), 762–772.
Cobbs, A.L. (1995). Fast approximate matching using suffix trees. InProc. Combinatorial Pattern Matching,

Lecture Notes in Computer Science (vol. 937, pp. 41–54), Springer-Verlag.
Dietterich, T.G. and Michalski, R.S. (1985). Discovering Patterns in Strings of Events,Artificial Intelligence, 25,

187–232.
Faloutsos, C. (1985). Access Methods for Text,ACM Computing Surveys, 17, 49–74.
Fayyad, U., Shapiro, G.P., and Smyth, P. (1996). Knowledge Discovery and Data Mining: Towards a Unifying

Framework,KDD, 82–88.
Gonnet, G.H. and Baeza-Yates, R. (1991).Handbook of Algorithms and Data Structures in Pascal and C, second

edition.
Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searching,ACM SIGMOD, 47–57.
Hui, L.C.K. (1992). Color Set Size Problem with Applications to String Matching. In A. Apostolico et al. (Eds.),

Combinatorial Patterns Matching, Lecture Notes in Computer Science, 644, 230–243, Springer-Verlag.
Knuth, D.E., Morris, J.H., and Pratt, V.R. (1977). Fast Pattern Matching in Strings,SIAM J. Comput.6, 323–350.
Landau, G.M. and Vishkin, U. (1989). Fast Parallel and Serial Approximate String Matching,Journal of Algo-

rithms, 10(2), 157–169.
McCreight, E.M. (1976). A Space-Economical Suffix Tree Construction Algorithm,JACM, 23(2), 262–272.
Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-tree: A Dynamic Index for Multi-Dimensional

Objects,VLDB, 507–518.
Stephen, G.A. (1994). String Searching Algorithms, Lectures Notes Series on Computing, World Scientific, 3.
Tomasic, A., Garcia-Molina, H., and Shoens, K. (1994). Incremental Updates of Inverted Lists for Text Document

Retrievals,ACM SIGMOD.
Ukkonen, E. (1992). Constructing Suffix-Trees On-Line in Linear Time,Algorithms, Software, Architecture:

Information Processing 92, Amsterdam: Elsevier, 1, 484–492.
Ukkonen, E., (1993). Approximate matching over suffix trees. InProc. Combinatorial Pattern Matching(vol. 4,

pp. 228–242), Springer-Verlag.
Wang, J.T.L., Chirn, G.W., Marr, T.G., Shapiro, B., Shasha, D., and Zhang, K. (1994). Combinatorial Pattern

Discovery for Scientific Sata: Some Preliminary Results,ACM SIGMOD, 115–125.
Weiner, P. (1973). Linear pattern matching algorithms,Conf. Record, IEEE 14th Annual Symposium on Switching

and Automata Theory(pp. 1–11).
Wu, S. and Manber, U. (1992). Fast Text Searching Allowing Errors,CACM, 35(10), 83–91.
Zobel, J., Moffat, A., and Sacks-Davis, R. (1993). Searching Large Lexicons for Partially Specified Terms using

Compressed Inverted Files,VLDB, 290–301.

